NXP LPC1548JBD100 User guide

Type
User guide
UM10736
LPC15xx User manual
Rev. 1.1 — 3 March 2014 User manual
Document information
Info Content
Keywords LPC1500, LPC1500 User manual , LPC15xx UM, LPC15xx User manual,
LPC1549, LPC1548, LPC1547, LPC1519, LPC1518, LPC1517
Abstract LPC15xx User manual
UM10736 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 1.1 — 3 March 2014 2 of 759
Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
NXP Semiconductors
UM10736
LPC15xx User manual
Revision history
Rev Date Description
1.1 20140303 LPC15xx User manual
Modifications: Section 5.4.2 “Criterion for valid user code corrected: If the signature is not valid, the part enumerates
as USB MSC. Also see Figure 7.
Number of bits corrected in Table 228 “SCT event state mask registers 0 to 15 (EV[0:15]_STATE,
addresses 0x1C01 8300 (EV0_STATE) to 0x1C01 8378 (EV15_STATE) (SCT0) and 0x1C01 C300
(EV0_STATE) to 0x1C01 C378 (EV15_STATE) (SCT1)) bit description.
Figure 11 “Example: Connect function U0_RXD and U0_TXD to pins corrected.
1 20140213 First LPC15xx User manual revision
UM10736 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 1.1 — 3 March 2014 3 of 759
1.1 Introduction
The LPC15xx are ARM Cortex-M3 based microcontrollers for embedded applications
featuring a rich peripheral set with very low power consumption. The ARM Cortex-M3 is a
next generation core that offers system enhancements such as enhanced debug features
and a higher level of support block integration.
The LPC15xx operate at CPU frequencies of up to 72 MHz. The ARM Cortex-M3 CPU
incorporates a 3-stage pipeline and uses a Harvard architecture with separate local
instruction and data buses as well as a third bus for peripherals. The ARM Cortex-M3
CPU also includes an internal prefetch unit that supports speculative branching.
The LPC15xx include up to 256 kB of flash memory, 32 kB of ROM, a 4 kB EEPROM, and
up to 36 kB of SRAM. The peripheral compliment includes one full-speed USB 2.0 device,
two SPI interfaces, three USARTs, one Fast-mode Plus I
2
C-bus interface, one C_CAN
module, PWM/timer subsystem with four configurable, multi-purpose State Configurable
Timers (SCTimer/PWM) with input pre-processing unit, a Real-time clock module with
independent power supply and a dedicated oscillator, two 12-channel/12-bit,
2 Msamples/sec ADCs, one 12-bit, 500 kSamples/sec DAC, four voltage comparators
with internal voltage reference, and a temperature sensor. A DMA engine can service
most peripherals.
For additional documentation, see Section 45.2 “
References.
1.2 Features
System:
ARM Cortex-M3 processor, running at frequencies of up to 72 MHz.
ARM Cortex-M3 built-in Nested Vectored Interrupt Controller (NVIC).
System tick timer.
Serial Wire Debug (SWD) with four breakpoints and two watchpoints.
Single-cycle multiplier supported.
Memory Protection Unit (MPU) included.
Memory:
Up to 256 kB on-chip flash programming memory with 256 Byte page write and
erase.
Up to 36 kB SRAM.
4 kB EEPROM.
UM10736
Chapter 1: LPC15xx Introductory information
Rev. 1.1 — 3 March 2014 User manual
UM10736 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 1.1 — 3 March 2014 4 of 759
NXP Semiconductors
UM10736
Chapter 1: LPC15xx Introductory information
ROM API support:
Boot loader with boot options from flash or external source via USART, C_CAN, or
USB
USB drivers
ADC drivers
SPI drivers
USART drivers
I2C drivers
Power profiles and power mode configuration with low-power mode configuration
option
DMA drivers
C_CAN drivers
Flash In-Application Programming (IAP) and In-System Programming (ISP).
Digital peripherals:
Simple DMA engine with 18 channels and 20 programmable input triggers.
High-speed GPIO interface with up to 76 General-Purpose I/O (GPIO) pins with
configurable pull-up/pull-down resistors, open-drain mode, input inverter, and
programmable digital glitch filter.
GPIO interrupt generation capability with boolean pattern-matching feature on
eight external inputs.
Two GPIO grouped port interrupts.
Switch matrix for flexible configuration of each I/O pin function.
CRC engine.
Quadrature Encoder Interface (QEI).
Configurable PWM/timer/motor control subsystem:
Up to four 32-bit counter/timers or up to eight 16-bit counter/timers or combinations
of 16-bit and 32-bit timers.
Up to 28 match outputs and 22 configurable capture inputs with input multiplexer.
Dither engine for improved average resolution of pulse edges.
Four State Configurable Timers (SCTimers) for highly flexible, event-driven timing
and PWM applications.
SCT Input Pre-processor Unit (SCTIPU) for processing timer inputs and immediate
handling of abort situations.
Integrated with ADC threshold compare interrupts, temperature sensor, and analog
comparator outputs for motor control feedback using analog signals.
Special-application and simple timers:
24-bit, four-channel, multi-rate timer (MRT) for repetitive interrupt generation at up
to four programmable, fixed rates.
Repetitive interrupt timer for general purpose use.
Windowed Watchdog timer (WWDT).
UM10736 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 1.1 — 3 March 2014 5 of 759
NXP Semiconductors
UM10736
Chapter 1: LPC15xx Introductory information
High-resolution 32-bit Real-time clock (RTC) with selectable 1 s or 1 ms time
resolution running in the always-on power domain. RTC can be used for wake-up
from all low power modes including Deep power-down.
Analog peripherals:
Two 12-bit ADC with up to 12 input channels per ADC and with multiple internal
and external trigger inputs and sample rates of up to 2 Msamples/s. Each ADC
supports two independent conversion sequences. ADC conversion clock can be
the system clock or an asynchronous clock derived from one of the three PLLs.
One 12-bit DAC.
Integrated temperature sensor and band gap internal reference voltage.
Four comparators with external and internal voltage references (ACMP0 to 3).
Comparator outputs are internally connected to the SCTimer/PWMs and ADCs and
externally to pins. Each comparator output contains a programmable glitch filter.
Serial interfaces:
Three USART interfaces with DMA, RS-485 support, auto-baud, and with
synchronous mode and 32 kHz mode for wake-up from Deep-sleep and
Power-down modes. The USARTs share a fractional baud-rate generator.
Two SPI controllers.
One I
2
C-bus interface supporting fast mode and Fast-mode Plus with data rates of
up to 1Mbit/s and with multiple address recognition and monitor mode.
One C_CAN controller.
One USB 2.0 full-speed device controller with on-chip PHY.
Clock generation:
12 MHz internal RC oscillator trimmed to 1 % accuracy for 25 C T
amb
+85 C
that can optionally be used as a system clock.
Crystal oscillator with an operating range of 1 MHz to 25 MHz.
Watchdog oscillator running at the fixed frequency of 503 kHz.
32 kHz low-power RTC oscillator with 32 kHz, 1 kHz, and 1 Hz outputs.
System PLL allows CPU operation up to the maximum CPU rate without the need
for a high-frequency crystal. May be run from the system oscillator or the internal
RC oscillator.
Two additional PLLs for generating the USB and SCTimer/PWM clocks.
Clock output function with divider that can reflect the crystal oscillator, the main
clock, the IRC, or the watchdog oscillator.
Power control:
Integrated PMU (Power Management Unit) to minimize power consumption.
Reduced power modes: Sleep mode, Deep-sleep mode, Power-down mode, and
Deep power-down mode.
APIs provided for optimizing power consumption in active and sleep modes and for
configuring Deep-sleep, Power-down, and Deep power-down modes.
Wake-up from Deep-sleep and Power-down modes on activity on USB, USART,
SPI, and I2C peripherals.
UM10736 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 1.1 — 3 March 2014 6 of 759
NXP Semiconductors
UM10736
Chapter 1: LPC15xx Introductory information
Wake-up from Sleep, Deep-sleep, Power-down, and Deep power-down modes
from the RTC alarm or wake-up interrupts.
Timer-controlled self wake-up from Deep power-down mode using the RTC
high-resolution/wake-up 1 kHz timer.
Power-On Reset (POR).
BrownOut Detect BOD).
JTAG boundary scan modes supported.
Unique device serial number for identification.
Single power supply 2.4 V to 3.6 V.
Temperature range -40 °C to +105 °C.
Available as LQFP100, LQFP64, and LQFP48 packages.
UM10736 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 1.1 — 3 March 2014 7 of 759
NXP Semiconductors
UM10736
Chapter 1: LPC15xx Introductory information
1.3 Block diagram
Grey-shaded blocks show peripherals that can provide hardware triggers for DMA transfers or have DMA request lines.
Fig 1. Block diagram
ARM
CORTEX-M3
TEST/DEBUG INTERFACE
SWD/ETM
SYSTICK
NVIC MPU
PROCESSOR CORE
PRECISION
IRC
SYSTEM
PLL
WATCHDOG
OSCILLATOR
USB
PLL
SCT
PLL
FREQUENCY
MEASUREMENT
SYSTEM
OSCILLATOR
RTC
OSCILLATOR
CLOCK
GENERATION
SCTIPU
256/128/64 kB FLASH
32 kB ROM
36/20/12 kB SRAM
4 kB EEPROM
12-bit DAC
MEMORY
PORT0/1/2
GINT0/1
PINT/
PATTERN MATCH
SCTIMER0/
PWM
SCTIMER1/
PWM
SCTIMER2/
PWM
SCTIMER3/
PWM
HS GPIO
QEI
DMA TRIGGER
ACMP0/
TEMPERATURE
SENSOR
ACMP1 ACMP2 ACMP3
INPUT MUX
SCTIMER/PWM/MOTOR CONTROL SUBSYSTEM
SPI0
USART0
SPI1
USART1
FM+ I2C0
USART2
C_CAN
FS USB/
PHY
INPUT MUX
SYSCON IOCON PMU CRC FLASH CTRL EEPROM CTRL
SYSTEM/MEMORY CONTROL
MRT RIT WWDT RTC
TIMERS
SERIAL PERIPHERALS
12-bit ADC0
TRIGGER MUX
ANALOG PERIPHERALS
12-bit ADC1
TRIGGER MUX
AHB MULTILAYER
MATRIX
AHB/APB BRIDGES
INPUT MUX INPUT MUX
DMA
pads
LPC15xx
n
pads
n
SWM
aaa-010869
UM10736 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 1.1 — 3 March 2014 8 of 759
NXP Semiconductors
UM10736
Chapter 1: LPC15xx Introductory information
1.4 Functional description
1.4.1 Architectural overview
The ARM Cortex-M3 includes three AHB-Lite buses, one system bus and the I-code and
D-code buses. One bus is dedicated for instruction fetch (I-code), and one bus is
dedicated for data access (D-code). The use of two core buses allows for simultaneous
operations if concurrent operations target different devices.
A multi-layer AHB matrix connects the Cortex-M3 buses and other bus masters to
peripherals in a flexible manner that optimizes performance by allowing peripherals on
different slaves ports of the matrix to be accessed simultaneously by different bus
masters. Details of the multilayer matrix connections are shown in Figure 2
.
APB peripherals are connected to the CPU via two APB buses using separate slave ports
from the multilayer AHB matrix. This allows for better performance by reducing collisions
between the CPU and the DMA controller. The APB bus bridges are configured to buffer
writes so that the CPU or DMA controller can write to APB devices without always waiting
for APB write completion.
1.4.2 ARM Cortex-M3 processor
The ARM Cortex-M3 is a general purpose 32-bit microprocessor, which offers high
performance and very low power consumption. The Cortex-M3 includes a Thumb-2
instruction set and provides low interrupt latency, hardware divide,
interruptible/continuable multiple load and store instructions, automatic state save and
restore for interrupts, tightly integrated interrupt controller, and multiple core buses
capable of simultaneous accesses.
Pipeline techniques are employed so that all parts of the processing and memory systems
can operate continuously. Typically, while one instruction is being executed, its successor
is being decoded, and a third instruction is being fetched from memory.
1.4.2.1 Cortex-M3 Configuration Options
The LPC15xx uses the r2p1 version of the Cortex-M3 CPU, which includes a number of
configurable options, as noted below.
System options:
The Nested Vectored Interrupt Controller (NVIC) is included.
SYSTICK timer is included.
Single-cycle multiplier supported.
A Memory Protection Unit (MPU) is included.
A ROM Table in included. The ROM Table provides addresses of debug components
to external debug systems.
Debug related options:
Serial Wire Debug is included. Serial Wire Debug allows debug operations using only
two wires, simple trace functions can be added with a third wire.
UM10736 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 1.1 — 3 March 2014 9 of 759
NXP Semiconductors
UM10736
Chapter 1: LPC15xx Introductory information
The Data Watchpoint and Trace (DWT) unit is included. The DWT allows data
address or data value matches to be trace information or trigger other events. The
DWT includes four comparators and counters for certain internal events.
An Instrumentation Trace Macrocell (ITM) is included. Software can write to the ITM in
order to send messages to the trace port.
The Trace Port Interface Unit (TPIU) is included. The TPIU encodes and provides
trace information to the outside world using the serial wire output pin function.
1.4.3 PWM/timer/motor control subsystem
The SCTs (State Configurable Timers) and the analog peripherals support multiple ways
of interconnecting their inputs and outputs and of interfacing to the pins and the DMA
controller. Using the highly flexible and programmable connection scheme makes it easy
to configure various subsystems for motor control and complex timing and tracking
applications. Specifically, the inputs to the SCTs and the trigger inputs of the ADCs and
DMA are selected through the input mux which offers a choice of many possible sources
for each input or trigger. SCT outputs are assigned to pins through the switch matrix
allowing for many pinout solutions.
1.4.3.1 PWW/timer subsystem
The SCTs can be configured to build a PWM controller with multiple outputs by
programming the MATCH and MATCHRELOAD registers of the SCTs to control the base
frequency and the duty cycle of each SCT output. More complex waveforms that span
multiple counter cycles or change behavior across or within counter cycles can be
generated using the state capability built into the SCT timers.
Combining the PWM functions with the analog functions, the PWM output can react to
control signals like comparator outputs or the ADC interrupts. The SCT IPU adds
emergency shut-down functions and pre-processing of controlling events. For an overview
of the PWM subsystem, see Figure 2 “
PWM-Analog subsystem.
UM10736 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 1.1 — 3 March 2014 10 of 759
NXP Semiconductors
UM10736
Chapter 1: LPC15xx Introductory information
1.4.3.2 Timer controlled subsystem
The timers, the analog components, and the DMA can be configured to form a subsystem
that can run independently of the main processor under the control of the SCTs and any
events that are generated by the A/D converters, the comparators, the SCT output
themselves, or the external pins. A/D conversions can be triggered by the timer outputs,
the comparator outputs or by events from external pins. Data can be transferred from the
ADCs to memory using the DMA controller, and the DMA transfers can be triggered by the
ADCs, the comparator outputs, or by the timer outputs.
For an overview of the subsystem, see Figure 3 “
Subsystem with timers, switch matrix,
DMA, and analog components.
Fig 2. PWM-Analog subsystem
INPUT MUX
SWITCH MATRIX
SWITCH MATRIX
TEMP SENSOR
VDDA DIVIDER
VOLTAGE
REFERENCE
TRIGGER
ADC0/ADC1
ANALOG IN
INTERRUPTS
ACMP0
ACMP1
ACMP2
ACMP3
OUTPUTS
SCT IPU
ANALOG IN
TIMER0
MATCH/
MATCHRELOAD
SCT0
OUTPUTS
TIMER1
MATCH/
MATCHRELOAD
SCT1
OUTPUTS
TIMER2
MATCH/
MATCHRELOAD
SCT2
OUTPUTS
TIMER3
MATCH/
MATCHRELOAD
SCT3
OUTPUTS
8 x PWM OUT
8 x PWM OUT
6 x PWM OUT
6 x PWM OUT
SCT0/1/2/3
digital signal from/to pins
analog signal from/to pins
digital signal internal
analog signal internal
analog peripheral
digital peripheral
THRESHOLD CROSSING
aaa-010873
4
UM10736 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 1.1 — 3 March 2014 11 of 759
NXP Semiconductors
UM10736
Chapter 1: LPC15xx Introductory information
Fig 3. Subsystem with timers, switch matrix, DMA, and analog components
TEMP SENSOR
VDDA DIVIDER
VOLTAGE
REFERENCE
ACMP0
ACMP1
ACMP2
ACMP3
TIMER0 (SCT0)
TIMER1 (SCT1)
TIMER2 (SCT2)
TIMER3 (SCT3)
INPUT MUX
OUTPUTS
OUTPUTS
TRIGGER
ADC0/ADC1
DAC
SCT IPU
ANALOG IN
INPUT MUX
DMA
SWITCH MATRIX
SWITCH MATRIX
ANALOG IN
INTERRUPTS
NVIC
DAC_SHUTOFF
digital signal from/to pins
analog signal from/to pins
digital signal internal
analog signal internal
analog peripheral
digital peripheral
THRESHOLD CROSSING
aaa-010874
4
UM10736 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 1.1 — 3 March 2014 12 of 759
1.1 How to read this chapter
USB is not available on parts LPC1519/18/17.
1.2 General description
The LPC15xx incorporates several distinct memory regions. Figure 1 shows the overall
map of the entire address space from the user program viewpoint following reset.
The APB peripheral area is 2 x 512 kB in size and is divided to allow for two blocks of up
to 32 peripherals. Each peripheral is allocated 16 kB of space simplifying the address
decoding.
The registers incorporated into the ARM Cortex-M3 core, such as NVIC, SysTick, and
sleep mode control, are located on the private peripheral bus.
1.2.1 SRAM
The parts contain a total 36 kB, 20 kB or 12 kB of contiguous, on-chip static RAM memory.
For each SRAM configuration, the SRAM is divided into three blocks: 2 x 16 kB + 4 kB for
36 kB SRAM, 2 x 8 kB + 4 kB for 20 kB SRAM, and 2 x 4 kB + 4 kB for 12 kB SRAM. The
bottom 16 kB, 8 kB, or 4 kB are enabled by the boot loader and cannot be disabled. The
next two SRAM blocks in each configuration can be disabled or enabled individually in the
SYSCON block to save power. See Section 3.6.22 “
System clock control register 0.
UM10736
Chapter 1: LPC15xx Memory mapping
Rev. 1.1 — 3 March 2014 User manual
Table 1. LPC15xx SRAM configurations
SRAM0 SRAM1 SRAM2
LPC1549/19 (total SRAM = 36 kB)
Address range 0x0200 0000 to
0x0200 3FFF
0x0200 4000 to
0x0200 7FFF
0x0200 8000 to
0x0200 8FFF
Size 16 kB 16 kB 4 kB
Control cannot be disabled disable/enable disable/enable
Default enabled enabled enabled
LPC1548/18 (total SRAM = 20 kB)
Address range 0x0200 0000 to
0x0200 1FFF
0x0200 2000 to
0x0200 3FFF
0x0200 4000 to
0x0200 4FFF
Size 8 kB 8 kB 4 kB
Control cannot be disabled disable/enable disable/enable
Default enabled enabled enabled
LPC1547/17 (total SRAM = 12 kB)
Address range 0x0200 0000 to
0x0200 0FFF
0x0200 1000 to
0x0200 1FFF
0x0200 2000 to
0x0200 2FFF
Size 4 kB 4 kB 4 kB
Control cannot be disabled disable/enable disable/enable
Default enabled enabled enabled
UM10736 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 1.1 — 3 March 2014 13 of 759
NXP Semiconductors
UM10736
Chapter 1: LPC15xx Memory mapping
1.2.2 Memory mapping
The private peripheral bus includes the ARM Cortex-M3 peripherals such as the NVIC, SysTick, and the core control registers.
Fig 1. Memory mapping
[
[
[&
[
[
[
[&
[
[
[
[&
[
[
[&
[
[
[&
[
[
[&
[
UHVHUYHG
N%IODVK
[
*%
*%
[
[
[
[
[&
[&
[))))))))
N%((3520
UHVHUYHG
UHVHUYHG
[
[&
$3%SHULSKHUDOV
[&
[&&
[&
&5&
*3,2
[&
[&&
'0$
[&
[
[
$3%SHULSKHUDOV
[)
[
N%65$0/3&
[
N%65$0/3&
[
N%65$0/3&
UHVHUYHG
/3&[[
[
N%ERRW520
[
[&
DFWLYHLQWHUUXSWYHFWRUV
UHVHUYHG
[
UHVHUYHG
UHVHUYHG
UHVHUYHG
UHVHUYHG
UHVHUYHG
6&7LPHU3:0
[&
6&7LPHU3:0
6&7LPHU3:0
[&
6&7LPHU3:0
[
[
[(
[(
SULYDWHSHULSKHUDOEXV
[
$'&
'$&
DQDORJFRPSDUDWRUV$&03
UHVHUYHG
UHVHUYHG
57&
::'7
UHVHUYHG
86$57
4(,
UHVHUYHG
86$57
63,
UHVHUYHG
,&
6<6&21
,138708;
UHVHUYHG
VZLWFKPDWUL[6:0
308
63,
UHVHUYHG

















$3%SHULSKHUDOV
[
[$
[$
[$&
[%
[&
[&
[(
[(&
[)
[)
[)
[)
[%
[$
[%
[%&
[)&
$'&
UHVHUYHG
057
UHVHUYHG
5,7
6&7,38
IODVKFWUO)0&
UHVHUYHG
3,17
UHVHUYHG
&B&$1
,2&21
*,17
*,17
86$57
UHVHUYHG
UHVHUYHG
((3520&75/















86%
DDD
UM10736 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 1.1 — 3 March 2014 14 of 759
NXP Semiconductors
UM10736
Chapter 1: LPC15xx Memory mapping
1.2.3 AHB multilayer matrix
Fig 2. AHB multilayer matrix connections
ARM
CORTEX-M3
TEST/DEBUG
INTERFACE
DMA
AHB-TO-APB
BRIDGE0
AHB-TO-APB
BRIDGE1
EEPROM
HS GPIO
slaves
SRAM2
System
bus
I-code
bus
D-code
bus
masters
FLASH
ROM
AHB MULTILAYER MATRIX
= master-slave connection
DAC
ACMP
WWDT
ADC0
RIT
I2C0 QEI
SWM SPI0
SPI1
USART1PMU
SYSCON
USART2
PINT
GINT0
GINT1
MRT
ADC1
USB
SRAM0
SRAM1
SCTIMER0/PWM
SCTIMER1/PWM
SCTIMER2/PWM
SCTIMER3/PWM
CRC
INPUT MUX RTC
SCTIPU
FLASH CTRL
IOCON EEPROM CTRL
USART2
C_CAN
aaa-010870
UM10736 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 1.1 — 3 March 2014 15 of 759
NXP Semiconductors
UM10736
Chapter 1: LPC15xx Memory mapping
1.2.4 Memory Protection Unit (MPU)
The Cortex-M3 processor has a memory protection unit (MPU) that provides fine grain
memory control, enabling applications to implement security privilege levels, separating
code, data and stack on a task-by-task basis. Such requirements are critical in many
embedded applications.
The MPU register interface is located on the private peripheral bus and is described in
detail in Ref. 1
.
UM10736 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 1.1 — 3 March 2014 16 of 759
2.1 How to read this chapter
USB is available on parts LPC1549/48/47.
2.2 Features
Nested Vectored Interrupt Controller that is an integral part of the ARM Cortex-M3.
Tightly coupled interrupt controller provides low interrupt latency.
Controls system exceptions and peripheral interrupts.
The NVIC supports 47 vectored interrupts.
Eight programmable interrupt priority levels with hardware priority level masking.
Software interrupt generation using the ARM exceptions SVCall and PendSV.
Support for NMI.
ARM Cortex-M3 Vector table offset register VTOR implemented.
2.3 General description
The Nested Vectored Interrupt Controller (NVIC) is an integral part of the Cortex-M3. The
tight coupling to the CPU allows for low interrupt latency and efficient processing of late
arriving interrupts.
2.3.1 Interrupt sources
Table 2 lists the interrupt sources for each peripheral function. Each peripheral device
may have one or more interrupt lines to the Vectored Interrupt Controller. Each line may
represent more than one interrupt source. The interrupt number does not imply any
interrupt priority.
See Ref. 1
for a detailed description of the NVIC and the NVIC register description.
UM10736
Chapter 2: LPC15xx Nested Vectored Interrupt Controller
(NVIC)
Rev. 1.1 — 3 March 2014 User manual
Table 2. Connection of interrupt sources to the NVIC
Interrupt
number
Name Description Flags
0 WDT Windowed watchdog timer
interrupt
WARNINT - watchdog warning interrupt
1 BOD BOD interrupt BODINTVAL - BOD interrupt level
2 FLASH Flash controller -
3 EE EEPROM controller interrupt -
4 DMA DMA Interrupt A and interrupt B, error interrupt
5 GINT0 GPIO group0 interrupt Enabled pin interrupts
6 GINT1 GPIO group1 interrupt Enabled pin interrupts
UM10736 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 1.1 — 3 March 2014 17 of 759
NXP Semiconductors
UM10736
Chapter 2: LPC15xx Nested Vectored Interrupt Controller (NVIC)
7 PIN_INT0 Pin interrupt 0 or pattern
match engine slice 0
interrupt
PSTAT - pin interrupt status
8 PIN_INT1 Pin interrupt 1 or pattern
match engine slice 1
interrupt
PSTAT - pin interrupt status
9 PIN_INT2 Pin interrupt 2 or pattern
match engine slice 2
interrupt
PSTAT - pin interrupt status
10 PIN_INT3 Pin interrupt 3 or pattern
match engine slice 3
interrupt
PSTAT - pin interrupt status
11 PIN_INT4 Pin interrupt 4 or pattern
match engine slice 4
interrupt
PSTAT - pin interrupt status
12 PIN_INT5 Pin interrupt 5 or pattern
match engine slice 5
interrupt
PSTAT - pin interrupt status
13 PIN_INT6 Pin interrupt 6 or pattern
match engine slice 6
interrupt
PSTAT - pin interrupt status
14 PIN_INT7 Pin interrupt 7 or pattern
match engine slice 7
interrupt
PSTAT - pin interrupt status
15 RIT RIT interrupt RITINT; masked compare interrupt
16 SCT0 State configurable timer
interrupt
EVFLAG SCT event
17 SCT1 State configurable timer
interrupt
EVFLAG SCT event
18 SCT2 State configurable timer
interrupt
EVFLAG SCT event
19 SCT3 State configurable timer
interrupt
EVFLAG SCT event
20 MRT Multi-rate timer interrupt Global MRT interrupt.
GFLAG0
GFLAG1
GFLAG2
GFLAG3
21 UART0 USART0 interrupt See Table 350 “
USART Interrupt Enable read and set
register (INTENSET, address 0x4004 000C(USART0),
0x4004 400C (USART1), 0x400C 000C (USART2)) bit
description.
22 UART1 USART1 interrupt Same as UART0
23 UART2 USART2 interrupt Same as UART0
24 I2C0 I2C0 interrupt See Table 379 “
Interrupt Enable Set and read register
(INTENSET, address 0x4005 0008) bit description.
Table 2. Connection of interrupt sources to the NVIC
Interrupt
number
Name Description Flags
UM10736 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 1.1 — 3 March 2014 18 of 759
NXP Semiconductors
UM10736
Chapter 2: LPC15xx Nested Vectored Interrupt Controller (NVIC)
2.4 Register description
The NVIC registers are located on the ARM private peripheral bus.
25 SPI0 SPI0 interrupt See Table 364 “SPI Interrupt Enable read and Set
register (INTENSET, addresses 0x4004 800C (SPI0),
0x4004 C00C (SPI1)) bit description.
26 SPI1 SPI1 interrupt Same as SPI0
27 C_CAN0 C_CAN0 interrupt INTID. See Table 398
.
28 USB USB interrupt
USB_Int_Req. See Table 342.
29 USB_FIQ USB interrupt
USB_Int_Req_FIQ. See Table 342.
30 USB_WAKEUP USB wake-up interrupt
USB need_clock signal
31 ADC0_SEQA ADC0 sequence A
completion.
See Table 445.
32 ADC0_SEQB ADC0 sequence B
completion.
See Table 445
.
33 ADC0_THCMP ADC0 threshold compare. See Table 445
.
34 ADC0_OVR ADC0 overrun. See Table 445
.
35 ADC1_SEQA ADC1 sequence A
completion.
See Table 445
.
36 ADC1_SEQB ADC1 sequence B
completion.
See Table 445
.
37 ADC1_THCMP ADC1 threshold compare. See Table 445
.
38 ADC1_OVR ADC1 overrun. See Table 445
.
39 DAC DAC interrupt Internal DMA timer overflow.
40 CMP0 Analog comparator 0
interrupt (ACMP0)
COMPEDGE - rising, falling, or both edges can set the
bit.
41 CMP1 Analog comparator 1
interrupt (ACMP1)
COMPEDGE - rising, falling, or both edges can set the
bit.
42 CMP2 Analog comparator 2
interrupt (ACMP2)
COMPEDGE - rising, falling, or both edges can set the
bit.
43 CMP3 Analog comparator 3
interrupt (ACMP3)
COMPEDGE - rising, falling, or both edges can set the
bit.
44 QEI QEI interrupt See Table 321
.
45 RTC_ALARM RTC alarm interrupt ALARM1HZ. See Table 272
.
46 RTC_WAKE RTC wake-up interrupt WAKEHIRES. See Table 272
.
Table 2. Connection of interrupt sources to the NVIC
Interrupt
number
Name Description Flags
UM10736 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 1.1 — 3 March 2014 19 of 759
NXP Semiconductors
UM10736
Chapter 2: LPC15xx Nested Vectored Interrupt Controller (NVIC)
Table 3. Register overview: NVIC (base address 0xE000 E000)
Name Access Address
offset
Description Reset
value
Reference
ISER0 R/W 0x100 Interrupt Set Enable Register 0. This register allows enabling
interrupts and reading back the interrupt enables for specific
peripheral functions.
0 Table 4
ISER1 R/W 0x104 Interrupt Set Enable Register 1. 0 Table 5
ICER0 R/W 0x180 Interrupt Clear Enable Register 0. This register allows disabling
interrupts and reading back the interrupt enables for specific
peripheral functions.
0 Table 6
ICER1 R/W 0x184 Interrupt Clear Enable Register 1. 0 Table 7
ISPR0 R/W 0x200 Interrupt Set Pending Register 0. This register allows changing the
interrupt state to pending and reading back the interrupt pending
state for specific peripheral functions.
0 Table 8
ISPR1 R/W 0x204 Interrupt Set Pending Register 1. 0 Table 9
ICPR0 R/W 0x280 Interrupt Clear Pending Register 0. This register allows changing the
interrupt state to not pending and reading back the interrupt pending
state for specific peripheral functions.
0 Table 10
ICPR1 R/W 0x284 Interrupt Clear Pending Register 1. 0 Table 11
IABR0 R 0x300 Interrupt Active Bit Register 0. This register allows reading the
current interrupt active state for specific peripheral functions.
0 Table 12
IABR1 R 0x304 Interrupt Active Bit Register 1. 0 Table 13
IPR0 R/W 0x400 Interrupt Priority Registers 0. This register allows assigning a priority
to each interrupt. This register contains the 3-bit priority fields for
interrupts 0 to 3.
0 Table 14
IPR1 R/W 0x404 Interrupt Priority Registers 1 This register allows assigning a priority
to each interrupt. This register contains the 3-bit priority fields for
interrupts 4 to 7.
0 Table 15
IPR2 R/W 0x408 Interrupt Priority Registers 2. This register allows assigning a priority
to each interrupt. This register contains the 3-bit priority fields for
interrupts 8 to 11.
0 Table 16
IPR3 R/W 0x40C Interrupt Priority Registers 3. This register allows assigning a priority
to each interrupt. This register contains the 3-bit priority fields for
interrupts 12 to 15.
0 Table 17
IPR4 R/W 0x410 Interrupt Priority Registers 4. This register allows assigning a priority
to each interrupt. This register contains the 3-bit priority fields for
interrupts 16 to 19.
0 Table 18
IPR5 R/W 0x414 Interrupt Priority Registers 5. This register allows assigning a priority
to each interrupt. This register contains the 3-bit priority fields for
interrupts 20 to 23.
0 Table 19
IPR6 R/W 0x418 Interrupt Priority Registers 6. This register allows assigning a priority
to each interrupt. This register contains the 3-bit priority fields for
interrupts 24 to 27.
0 Table 20
IPR7 R/W 0x41C Interrupt Priority Registers 7. This register allows assigning a priority
to each interrupt. This register contains the 3-bit priority fields for
interrupts 28 to 31.
0 Table 21
IPR8 R/W 0x420 Interrupt Priority Registers 8. This register allows assigning a priority
to each interrupt. This register contains the 3-bit priority fields for
interrupts 32 to 35.
0 Table 22
UM10736 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 1.1 — 3 March 2014 20 of 759
NXP Semiconductors
UM10736
Chapter 2: LPC15xx Nested Vectored Interrupt Controller (NVIC)
2.4.1 Interrupt Set Enable Register 0 register
The ISER0 register allows to enable peripheral interrupts or to read the enabled state of
those interrupts. Disable interrupts through the ICER0.
The bit description is as follows for all bits in this register:
Write Writing 0 has no effect, writing 1 enables the interrupt.
Read — 0 indicates that the interrupt is disabled, 1 indicates that the interrupt is enabled.
IPR9 R/W 0x424 Interrupt Priority Registers 9. This register allows assigning a priority
to each interrupt. This register contains the 3-bit priority fields for
interrupts 36 to 39.
0 Table 23
IPR10 R/W 0x428 Interrupt Priority Registers 10. This register allows assigning a priority
to each interrupt. This register contains the 3-bit priority fields for
interrupts 40 to 43.
0 Table 24
IPR11 R/W 0x42C Interrupt Priority Registers 11. This register allows assigning a priority
to each interrupt. This register contains the 3-bit priority fields for
interrupts 44 to 46.
0 Table 25
STIR W 0xF00 Software Trigger Interrupt Register. This register allows software to
generate an interrupt.
0 Table 26
Table 3. Register overview: NVIC (base address 0xE000 E000) …continued
Name Access Address
offset
Description Reset
value
Reference
Table 4. Interrupt Set Enable Register 0 register (ISER0, address 0xE000 E100) bit
description
Bit Symbol Description Reset value
0 ISE_WDT Interrupt enable. 0
1 ISE_BOD Interrupt enable. 0
2 ISE_FLASH Interrupt enable. 0
3 ISE_EE Interrupt enable. 0
4 ISE_DMA Interrupt enable. 0
5 ISE_GINT0 Interrupt enable. 0
6 ISE_GINT1 Interrupt enable. 0
7 ISE_PIN_INT0 Interrupt enable. 0
8 ISE_PIN_INT1 Interrupt enable. 0
9 ISE_PIN_INT2 Interrupt enable. 0
10 ISE_PIN_INT3 Interrupt enable. 0
11 ISE_PIN_INT4 Interrupt enable. 0
12 ISE_PIN_INT5 Interrupt enable. 0
13 ISE_PIN_INT6 Interrupt enable. 0
14 ISE_PIN_INT7 Interrupt enable. 0
15 ISE_RIT Interrupt enable. 0
16 ISE_SCT0 Interrupt enable. 0
17 ISE_SCT1 Interrupt enable. 0
18 ISE_SCT2 Interrupt enable. 0
19 ISE_SCT3 Interrupt enable. 0
  • Page 1 1
  • Page 2 2
  • Page 3 3
  • Page 4 4
  • Page 5 5
  • Page 6 6
  • Page 7 7
  • Page 8 8
  • Page 9 9
  • Page 10 10
  • Page 11 11
  • Page 12 12
  • Page 13 13
  • Page 14 14
  • Page 15 15
  • Page 16 16
  • Page 17 17
  • Page 18 18
  • Page 19 19
  • Page 20 20
  • Page 21 21
  • Page 22 22
  • Page 23 23
  • Page 24 24
  • Page 25 25
  • Page 26 26
  • Page 27 27
  • Page 28 28
  • Page 29 29
  • Page 30 30
  • Page 31 31
  • Page 32 32
  • Page 33 33
  • Page 34 34
  • Page 35 35
  • Page 36 36
  • Page 37 37
  • Page 38 38
  • Page 39 39
  • Page 40 40
  • Page 41 41
  • Page 42 42
  • Page 43 43
  • Page 44 44
  • Page 45 45
  • Page 46 46
  • Page 47 47
  • Page 48 48
  • Page 49 49
  • Page 50 50
  • Page 51 51
  • Page 52 52
  • Page 53 53
  • Page 54 54
  • Page 55 55
  • Page 56 56
  • Page 57 57
  • Page 58 58
  • Page 59 59
  • Page 60 60
  • Page 61 61
  • Page 62 62
  • Page 63 63
  • Page 64 64
  • Page 65 65
  • Page 66 66
  • Page 67 67
  • Page 68 68
  • Page 69 69
  • Page 70 70
  • Page 71 71
  • Page 72 72
  • Page 73 73
  • Page 74 74
  • Page 75 75
  • Page 76 76
  • Page 77 77
  • Page 78 78
  • Page 79 79
  • Page 80 80
  • Page 81 81
  • Page 82 82
  • Page 83 83
  • Page 84 84
  • Page 85 85
  • Page 86 86
  • Page 87 87
  • Page 88 88
  • Page 89 89
  • Page 90 90
  • Page 91 91
  • Page 92 92
  • Page 93 93
  • Page 94 94
  • Page 95 95
  • Page 96 96
  • Page 97 97
  • Page 98 98
  • Page 99 99
  • Page 100 100
  • Page 101 101
  • Page 102 102
  • Page 103 103
  • Page 104 104
  • Page 105 105
  • Page 106 106
  • Page 107 107
  • Page 108 108
  • Page 109 109
  • Page 110 110
  • Page 111 111
  • Page 112 112
  • Page 113 113
  • Page 114 114
  • Page 115 115
  • Page 116 116
  • Page 117 117
  • Page 118 118
  • Page 119 119
  • Page 120 120
  • Page 121 121
  • Page 122 122
  • Page 123 123
  • Page 124 124
  • Page 125 125
  • Page 126 126
  • Page 127 127
  • Page 128 128
  • Page 129 129
  • Page 130 130
  • Page 131 131
  • Page 132 132
  • Page 133 133
  • Page 134 134
  • Page 135 135
  • Page 136 136
  • Page 137 137
  • Page 138 138
  • Page 139 139
  • Page 140 140
  • Page 141 141
  • Page 142 142
  • Page 143 143
  • Page 144 144
  • Page 145 145
  • Page 146 146
  • Page 147 147
  • Page 148 148
  • Page 149 149
  • Page 150 150
  • Page 151 151
  • Page 152 152
  • Page 153 153
  • Page 154 154
  • Page 155 155
  • Page 156 156
  • Page 157 157
  • Page 158 158
  • Page 159 159
  • Page 160 160
  • Page 161 161
  • Page 162 162
  • Page 163 163
  • Page 164 164
  • Page 165 165
  • Page 166 166
  • Page 167 167
  • Page 168 168
  • Page 169 169
  • Page 170 170
  • Page 171 171
  • Page 172 172
  • Page 173 173
  • Page 174 174
  • Page 175 175
  • Page 176 176
  • Page 177 177
  • Page 178 178
  • Page 179 179
  • Page 180 180
  • Page 181 181
  • Page 182 182
  • Page 183 183
  • Page 184 184
  • Page 185 185
  • Page 186 186
  • Page 187 187
  • Page 188 188
  • Page 189 189
  • Page 190 190
  • Page 191 191
  • Page 192 192
  • Page 193 193
  • Page 194 194
  • Page 195 195
  • Page 196 196
  • Page 197 197
  • Page 198 198
  • Page 199 199
  • Page 200 200
  • Page 201 201
  • Page 202 202
  • Page 203 203
  • Page 204 204
  • Page 205 205
  • Page 206 206
  • Page 207 207
  • Page 208 208
  • Page 209 209
  • Page 210 210
  • Page 211 211
  • Page 212 212
  • Page 213 213
  • Page 214 214
  • Page 215 215
  • Page 216 216
  • Page 217 217
  • Page 218 218
  • Page 219 219
  • Page 220 220
  • Page 221 221
  • Page 222 222
  • Page 223 223
  • Page 224 224
  • Page 225 225
  • Page 226 226
  • Page 227 227
  • Page 228 228
  • Page 229 229
  • Page 230 230
  • Page 231 231
  • Page 232 232
  • Page 233 233
  • Page 234 234
  • Page 235 235
  • Page 236 236
  • Page 237 237
  • Page 238 238
  • Page 239 239
  • Page 240 240
  • Page 241 241
  • Page 242 242
  • Page 243 243
  • Page 244 244
  • Page 245 245
  • Page 246 246
  • Page 247 247
  • Page 248 248
  • Page 249 249
  • Page 250 250
  • Page 251 251
  • Page 252 252
  • Page 253 253
  • Page 254 254
  • Page 255 255
  • Page 256 256
  • Page 257 257
  • Page 258 258
  • Page 259 259
  • Page 260 260
  • Page 261 261
  • Page 262 262
  • Page 263 263
  • Page 264 264
  • Page 265 265
  • Page 266 266
  • Page 267 267
  • Page 268 268
  • Page 269 269
  • Page 270 270
  • Page 271 271
  • Page 272 272
  • Page 273 273
  • Page 274 274
  • Page 275 275
  • Page 276 276
  • Page 277 277
  • Page 278 278
  • Page 279 279
  • Page 280 280
  • Page 281 281
  • Page 282 282
  • Page 283 283
  • Page 284 284
  • Page 285 285
  • Page 286 286
  • Page 287 287
  • Page 288 288
  • Page 289 289
  • Page 290 290
  • Page 291 291
  • Page 292 292
  • Page 293 293
  • Page 294 294
  • Page 295 295
  • Page 296 296
  • Page 297 297
  • Page 298 298
  • Page 299 299
  • Page 300 300
  • Page 301 301
  • Page 302 302
  • Page 303 303
  • Page 304 304
  • Page 305 305
  • Page 306 306
  • Page 307 307
  • Page 308 308
  • Page 309 309
  • Page 310 310
  • Page 311 311
  • Page 312 312
  • Page 313 313
  • Page 314 314
  • Page 315 315
  • Page 316 316
  • Page 317 317
  • Page 318 318
  • Page 319 319
  • Page 320 320
  • Page 321 321
  • Page 322 322
  • Page 323 323
  • Page 324 324
  • Page 325 325
  • Page 326 326
  • Page 327 327
  • Page 328 328
  • Page 329 329
  • Page 330 330
  • Page 331 331
  • Page 332 332
  • Page 333 333
  • Page 334 334
  • Page 335 335
  • Page 336 336
  • Page 337 337
  • Page 338 338
  • Page 339 339
  • Page 340 340
  • Page 341 341
  • Page 342 342
  • Page 343 343
  • Page 344 344
  • Page 345 345
  • Page 346 346
  • Page 347 347
  • Page 348 348
  • Page 349 349
  • Page 350 350
  • Page 351 351
  • Page 352 352
  • Page 353 353
  • Page 354 354
  • Page 355 355
  • Page 356 356
  • Page 357 357
  • Page 358 358
  • Page 359 359
  • Page 360 360
  • Page 361 361
  • Page 362 362
  • Page 363 363
  • Page 364 364
  • Page 365 365
  • Page 366 366
  • Page 367 367
  • Page 368 368
  • Page 369 369
  • Page 370 370
  • Page 371 371
  • Page 372 372
  • Page 373 373
  • Page 374 374
  • Page 375 375
  • Page 376 376
  • Page 377 377
  • Page 378 378
  • Page 379 379
  • Page 380 380
  • Page 381 381
  • Page 382 382
  • Page 383 383
  • Page 384 384
  • Page 385 385
  • Page 386 386
  • Page 387 387
  • Page 388 388
  • Page 389 389
  • Page 390 390
  • Page 391 391
  • Page 392 392
  • Page 393 393
  • Page 394 394
  • Page 395 395
  • Page 396 396
  • Page 397 397
  • Page 398 398
  • Page 399 399
  • Page 400 400
  • Page 401 401
  • Page 402 402
  • Page 403 403
  • Page 404 404
  • Page 405 405
  • Page 406 406
  • Page 407 407
  • Page 408 408
  • Page 409 409
  • Page 410 410
  • Page 411 411
  • Page 412 412
  • Page 413 413
  • Page 414 414
  • Page 415 415
  • Page 416 416
  • Page 417 417
  • Page 418 418
  • Page 419 419
  • Page 420 420
  • Page 421 421
  • Page 422 422
  • Page 423 423
  • Page 424 424
  • Page 425 425
  • Page 426 426
  • Page 427 427
  • Page 428 428
  • Page 429 429
  • Page 430 430
  • Page 431 431
  • Page 432 432
  • Page 433 433
  • Page 434 434
  • Page 435 435
  • Page 436 436
  • Page 437 437
  • Page 438 438
  • Page 439 439
  • Page 440 440
  • Page 441 441
  • Page 442 442
  • Page 443 443
  • Page 444 444
  • Page 445 445
  • Page 446 446
  • Page 447 447
  • Page 448 448
  • Page 449 449
  • Page 450 450
  • Page 451 451
  • Page 452 452
  • Page 453 453
  • Page 454 454
  • Page 455 455
  • Page 456 456
  • Page 457 457
  • Page 458 458
  • Page 459 459
  • Page 460 460
  • Page 461 461
  • Page 462 462
  • Page 463 463
  • Page 464 464
  • Page 465 465
  • Page 466 466
  • Page 467 467
  • Page 468 468
  • Page 469 469
  • Page 470 470
  • Page 471 471
  • Page 472 472
  • Page 473 473
  • Page 474 474
  • Page 475 475
  • Page 476 476
  • Page 477 477
  • Page 478 478
  • Page 479 479
  • Page 480 480
  • Page 481 481
  • Page 482 482
  • Page 483 483
  • Page 484 484
  • Page 485 485
  • Page 486 486
  • Page 487 487
  • Page 488 488
  • Page 489 489
  • Page 490 490
  • Page 491 491
  • Page 492 492
  • Page 493 493
  • Page 494 494
  • Page 495 495
  • Page 496 496
  • Page 497 497
  • Page 498 498
  • Page 499 499
  • Page 500 500
  • Page 501 501
  • Page 502 502
  • Page 503 503
  • Page 504 504
  • Page 505 505
  • Page 506 506
  • Page 507 507
  • Page 508 508
  • Page 509 509
  • Page 510 510
  • Page 511 511
  • Page 512 512
  • Page 513 513
  • Page 514 514
  • Page 515 515
  • Page 516 516
  • Page 517 517
  • Page 518 518
  • Page 519 519
  • Page 520 520
  • Page 521 521
  • Page 522 522
  • Page 523 523
  • Page 524 524
  • Page 525 525
  • Page 526 526
  • Page 527 527
  • Page 528 528
  • Page 529 529
  • Page 530 530
  • Page 531 531
  • Page 532 532
  • Page 533 533
  • Page 534 534
  • Page 535 535
  • Page 536 536
  • Page 537 537
  • Page 538 538
  • Page 539 539
  • Page 540 540
  • Page 541 541
  • Page 542 542
  • Page 543 543
  • Page 544 544
  • Page 545 545
  • Page 546 546
  • Page 547 547
  • Page 548 548
  • Page 549 549
  • Page 550 550
  • Page 551 551
  • Page 552 552
  • Page 553 553
  • Page 554 554
  • Page 555 555
  • Page 556 556
  • Page 557 557
  • Page 558 558
  • Page 559 559
  • Page 560 560
  • Page 561 561
  • Page 562 562
  • Page 563 563
  • Page 564 564
  • Page 565 565
  • Page 566 566
  • Page 567 567
  • Page 568 568
  • Page 569 569
  • Page 570 570
  • Page 571 571
  • Page 572 572
  • Page 573 573
  • Page 574 574
  • Page 575 575
  • Page 576 576
  • Page 577 577
  • Page 578 578
  • Page 579 579
  • Page 580 580
  • Page 581 581
  • Page 582 582
  • Page 583 583
  • Page 584 584
  • Page 585 585
  • Page 586 586
  • Page 587 587
  • Page 588 588
  • Page 589 589
  • Page 590 590
  • Page 591 591
  • Page 592 592
  • Page 593 593
  • Page 594 594
  • Page 595 595
  • Page 596 596
  • Page 597 597
  • Page 598 598
  • Page 599 599
  • Page 600 600
  • Page 601 601
  • Page 602 602
  • Page 603 603
  • Page 604 604
  • Page 605 605
  • Page 606 606
  • Page 607 607
  • Page 608 608
  • Page 609 609
  • Page 610 610
  • Page 611 611
  • Page 612 612
  • Page 613 613
  • Page 614 614
  • Page 615 615
  • Page 616 616
  • Page 617 617
  • Page 618 618
  • Page 619 619
  • Page 620 620
  • Page 621 621
  • Page 622 622
  • Page 623 623
  • Page 624 624
  • Page 625 625
  • Page 626 626
  • Page 627 627
  • Page 628 628
  • Page 629 629
  • Page 630 630
  • Page 631 631
  • Page 632 632
  • Page 633 633
  • Page 634 634
  • Page 635 635
  • Page 636 636
  • Page 637 637
  • Page 638 638
  • Page 639 639
  • Page 640 640
  • Page 641 641
  • Page 642 642
  • Page 643 643
  • Page 644 644
  • Page 645 645
  • Page 646 646
  • Page 647 647
  • Page 648 648
  • Page 649 649
  • Page 650 650
  • Page 651 651
  • Page 652 652
  • Page 653 653
  • Page 654 654
  • Page 655 655
  • Page 656 656
  • Page 657 657
  • Page 658 658
  • Page 659 659
  • Page 660 660
  • Page 661 661
  • Page 662 662
  • Page 663 663
  • Page 664 664
  • Page 665 665
  • Page 666 666
  • Page 667 667
  • Page 668 668
  • Page 669 669
  • Page 670 670
  • Page 671 671
  • Page 672 672
  • Page 673 673
  • Page 674 674
  • Page 675 675
  • Page 676 676
  • Page 677 677
  • Page 678 678
  • Page 679 679
  • Page 680 680
  • Page 681 681
  • Page 682 682
  • Page 683 683
  • Page 684 684
  • Page 685 685
  • Page 686 686
  • Page 687 687
  • Page 688 688
  • Page 689 689
  • Page 690 690
  • Page 691 691
  • Page 692 692
  • Page 693 693
  • Page 694 694
  • Page 695 695
  • Page 696 696
  • Page 697 697
  • Page 698 698
  • Page 699 699
  • Page 700 700
  • Page 701 701
  • Page 702 702
  • Page 703 703
  • Page 704 704
  • Page 705 705
  • Page 706 706
  • Page 707 707
  • Page 708 708
  • Page 709 709
  • Page 710 710
  • Page 711 711
  • Page 712 712
  • Page 713 713
  • Page 714 714
  • Page 715 715
  • Page 716 716
  • Page 717 717
  • Page 718 718
  • Page 719 719
  • Page 720 720
  • Page 721 721
  • Page 722 722
  • Page 723 723
  • Page 724 724
  • Page 725 725
  • Page 726 726
  • Page 727 727
  • Page 728 728
  • Page 729 729
  • Page 730 730
  • Page 731 731
  • Page 732 732
  • Page 733 733
  • Page 734 734
  • Page 735 735
  • Page 736 736
  • Page 737 737
  • Page 738 738
  • Page 739 739
  • Page 740 740
  • Page 741 741
  • Page 742 742
  • Page 743 743
  • Page 744 744
  • Page 745 745
  • Page 746 746
  • Page 747 747
  • Page 748 748
  • Page 749 749
  • Page 750 750
  • Page 751 751
  • Page 752 752
  • Page 753 753
  • Page 754 754
  • Page 755 755
  • Page 756 756
  • Page 757 757
  • Page 758 758
  • Page 759 759

NXP LPC1548JBD100 User guide

Type
User guide

Ask a question and I''ll find the answer in the document

Finding information in a document is now easier with AI