PEAK-System PCAN-GPS Microcontroller Operating instructions

Type
Operating instructions
UM10562
LPC408x/407x User manual
Rev. 3 — 12 March 2014 User manual
Document information
Info Content
Keywords ARM, ARM Cortex-M4, 32-bit, USB, Ethernet, LCD, CAN, I
2
C, I
2
S, Flash,
EEPROM, Microcontroller
Abstract LPC408x/407x user manual
UM10562 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 3 — 12 March 2014 2 of 947
Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
NXP Semiconductors
UM10562
LPC408x/407x User Manual
Revision history
Rev Date Description
3 20140312
Figure 16 “EMC block diagram updated and CCLK renamed to EMCCLK throughout the
chapter.
Update Section 9.11.1 “Mode register setup.
Function SSP2_SCK added to pin P5[2]. See Table 75 and Table 90.
Function SSP2_SSEL added to pin P5[3]. See Table 75 and Table 90.
Updated the description of the ROM_LAT bit in Table 7 “Matrix Arbitration register (MATRIXARB
- 0x400F C188) bit description. This bit should be 1 for normal operation.
Figure 23 “Ethernet packet fields updated with the correct order of octets in the MAC address.
Description of FLASHTIM bit values 0x11 and 0x100 corrected in Table 50 “Flash Accelerator
Configuration register (FLASHCFG - address 0x400F C000) bit description.
IRCCTRL register added. See Table 34IRC control register (IRCCTRL - address
0x400F C1A4) bit description.
Incorrect reference to VREFN removed in Table 684 “D/A Pin Description and Table 686 “D/A
Converter Register (CR - address 0x4008 C000) bit description.
Description of the SPIFI software library removed. The description is available on
LPCWare.com
.
Description of the SPIFI hardware and register interface added. See Section 15.7.
Description of the SLEW bit improved. See Table 83Type D IOCON registers bit description.
2 20130306
Added LQFP100.
Minor updates and corrections.
1 20120913
Initial LPC408x/407x User manual version.
UM10562 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 3 — 12 March 2014 3 of 947
1.1 Introduction
The LPC408x/407x is an ARM Cortex-M4 based microcontroller for embedded
applications requiring a high level of integration and low power dissipation.
The Cortex-M4 processor is a high-performance 32-bit processor with a 3-stage pipeline
Harvard architecture with separate local instruction and data buses, as well as a third bus
with slightly lower performance for peripherals. The Cortex-M4 uses the Thumb®
instruction set, providing high code density and reduced program memory requirements.
The Cortex-M4 CPU also includes an internal prefetch unit that supports speculative
branches. The LPC408x/407x adds a specialized flash memory accelerator to give
optimal performance when executing code from flash. The LPC408x/407x is targeted to
operate at up to a 120 MHz CPU frequency under worst case commercial conditions.
The peripheral complement of the LPC408x/407x includes up to 512 kB of Flash memory,
up to 96 kB of data memory, 4,032 bytes of EEPROM memory, an External Memory
Controller for SDRAM and static memory access, an LCD panel controller, an Ethernet
MAC, a high speed SPI flash memory interface (SPIFI), a General Purpose DMA
controller, a USB device/host/OTG interface, 5 UARTs, 3 SSP controllers, 3 I
2
C
interfaces, an I
2
S serial audio interface, a 2-channel CAN interface, an SD card interface,
an 8 channel 12-bit ADC, a 10-bit DAC, analog comparators, a Motor Control PWM, a
Quadrature Encoder Interface, 4 general purpose timers, a 6-output general purpose
PWM, an ultra-low power RTC with separate battery supply and event monitor/recorder, a
windowed watchdog timer, a CRC calculation engine, up to 165 general purpose I/O pins,
and more.
See Section 41.2 “References”
for additional documentation related to the LPC408x/407x
parts.
UM10562
Chapter 1: Introductory information
Rev. 3 — 12 March 2014 User manual
UM10562 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 3 — 12 March 2014 4 of 947
NXP Semiconductors
UM10562
Chapter 1: Introductory information
1.2 Features
Refer to Section 1.4 for details of features for specific part numbers.
Functional replacement for LPC23xx and 24xx family devices.
ARM Cortex-M4 processor, running at frequencies of up to 120 MHz. The Cortex-M4
executes the Thumb®-2 instruction set for optimal performance and code size,
including hardware division, single cycle multiply, and bit-field manipulation. A
Memory Protection Unit (MPU) supporting eight regions is included.
Cortex-M4 built-in Nested Vectored Interrupt Controller (NVIC).
Cortex-M4 Floating Point Unit (FPU), supporting single-precision floating-point
computation functionality in compliance with the ANSI/IEEE Standard 754-2008. The
FPU provides add, subtract, multiply, divide, multiply and accumulate, and square root
operations. It also performs a variety of conversions between fixed-point,
floating-point, and integer data formats. The FPU is not available on LPC4074
devices.
Up to 512 kB on-chip flash program memory with In-System Programming (ISP) and
In-Application Programming (IAP) capabilities. The combination of an enhanced flash
memory accelerator and location of the flash memory on the CPU local code/data bus
provides high code performance from flash.
Up to 96 kB on-chip SRAM includes:
Up to 64 kB of Main SRAM on the CPU code/data bus for high-performance CPU
access.
Up to two 16 kB SRAM blocks with separate access paths for higher throughput.
These SRAM blocks may be used for Ethernet, USB, LCD, and DMA memory, as
well as for general purpose instruction and data storage.
Up to 4,032 bytes of on-chip EEPROM.
External Memory Controller provides support for asynchronous static memory devices
such as RAM, ROM and Flash up to 64 MB, as well as dynamic memories such as
Single Data Rate SDRAM.
Eight channel General Purpose DMA controller (GPDMA) on the AHB multilayer
matrix that can be used with the SSP, I
2
S, UART, SD/MMC, CRC engine,
Analog-to-Digital and Digital-to-Analog converter peripherals, timer match signals,
GPIO, and for memory-to-memory transfers.
Multilayer AHB matrix interconnect provides a separate bus for each AHB master.
AHB masters include the CPU, General Purpose DMA controller, Ethernet MAC, LCD
controller, and the USB interface. This interconnect provides communication with no
arbitration delays unless two masters attempt to access the same slave at the same
time.
Split APB bus allows for higher throughput with fewer stalls between the CPU and
DMA. A single level of write buffering allows the CPU to continue without waiting for
completion of APB writes if the APB was not already busy.
LCD controller, supporting both Super-Twisted Nematic (STN) and Thin-Film
Transistor (TFT) displays. The LCD controller is not available on LPC407x devices.
Dedicated DMA controller.
Selectable display resolution (up to 1024 × 768 pixels).
UM10562 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 3 — 12 March 2014 5 of 947
NXP Semiconductors
UM10562
Chapter 1: Introductory information
Supports up to 24-bit true-color mode.
Serial interfaces:
Ethernet MAC with MII/RMII interface and dedicated DMA controller.
USB 2.0 full-speed controller that can be configured for either device, Host, or
OTG operation with an on-chip PHY for device and Host functions and a dedicated
DMA controller. USB Host and OTG are not available on LPC4074 devices.
Five UARTs with fractional baud rate generation, internal FIFOs, IrDA, DMA
support, and RS-485/EIA-485 support on most LPC408x/407x devices. UART1
also has a full set of modem handshaking signals. UART4 includes a synchronous
mode and a smart card mode supporting ISO 7816-3. UART4 is not available on
LPC4074 devices.
Three SSP controllers with FIFO and multi-protocol capabilities. The SSP
interfaces can be used with the GPDMA controller.
Three enhanced I
2
C-bus interfaces, one with an open-drain output supporting the
full I
2
C specification and Fast mode Plus with data rates of 1Mbit/s, two with
standard port pins. Enhancements include multiple address recognition and
monitor mode.
Two-channel CAN controller.
I
2
S (Inter-IC Sound) interface for digital audio input or output, with fractional rate
control. The I
2
S interface can be used with the GPDMA. The I
2
S interface supports
3-wire data transmit and receive or 4-wire combined transmit and receive
connections, as well as master clock output.
SPIFI (SPI Flash Interface). This interface uses an SPI bus superset with 4 data
lines to access off-chip Quad SPI Flash memory at a much higher rate than is
possible using standard SPI or SSP interfaces. The SPIFI function allows memory
mapping the contents of the off-chip SPI Flash memory such that it can be
executed as if it were on-chip code memory. Supports SPI memories with 1 or 4
data lines.
Other peripherals:
SD card interface that also supports MMC cards. The SD card interface is not
available on LPC4074 devices.
General Purpose I/O (GPIO) pins with configurable pull-up/down resistors, open
drain mode, and repeater mode. All GPIOs are located on an AHB bus for fast
access, and support Cortex-M4 bit-banding. GPIOs can be accessed by the
General Purpose DMA Controller. Any pin of ports 0 and 2 can be used to generate
an interrupt. There are 165 GPIOs on 208-pin packages, 141 GPIOs on 180-pin
packages, and 109 GPIOs on 144-pin packages.
12-bit Analog-to-Digital Converter (ADC) with input multiplexing among eight pins,
conversion rates up to 400 kHz, and multiple result registers. The 12-bit ADC can
be used with the GPDMA controller.
10-bit Digital-to-Analog Converter (DAC) with dedicated conversion timer and DMA
support.
Dual analog comparator with multiple selectable inputs, selectable internal
reference voltages, and versatile interrupt generation. The comparators are not
available on LPC4074 devices.
UM10562 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 3 — 12 March 2014 6 of 947
NXP Semiconductors
UM10562
Chapter 1: Introductory information
Four general purpose timers/counters, with a total of eight capture inputs and ten
compare outputs. Each timer block has an external count input. Specific timer
events can be selected to generate DMA requests.
One motor control PWM with support for three-phase motor control.
Quadrature encoder interface that can monitor one external quadrature encoder.
The QEI is not available on LPC4074 devices.
Two standard PWM/timer blocks with external count input option.
Real-Time Clock (RTC) with a separate power domain. The RTC is clocked by a
dedicated RTC oscillator. The RTC block includes 20 bytes of battery-powered
backup registers, allowing system status to be stored when the rest of the chip is
powered off. Battery power can be supplied from a standard 3 V Lithium button
cell. The RTC will continue working when the battery voltage drops to as low as
2.1 V. An RTC interrupt can wake up the CPU from any reduced power mode.
Event Monitor/Recorder that can capture the RTC value when an event occurs on
any of 3 inputs. The event identification and the time it occurred are stored in
registers. The Event Monitor/Recorder is in the RTC power domain, and can
therefore operate as long as there is RTC power.
Windowed Watchdog Timer (WWDT). Windowed operation, dedicated internal
oscillator, watchdog warning interrupt, and safety features.
CRC Engine block can calculate a CRC on supplied data using 1 of 3 standard
polynomials. The CRC engine can be used in conjunction with the DMA controller
to generate a CRC without CPU involvement in the data transfer.
Cortex-M4 system tick timer, including an external clock input option.
Standard JTAG test/debug interface as well as Serial Wire Debug and Serial Wire
Trace Port options.
Emulation trace module supports real-time trace.
Single 3.3 V power supply (2.4 V to 3.6 V). Temperature range of -40 °C to 85 °C.
Four reduced power modes: Sleep, Deep-sleep, Power-down, and Deep
Power-down.
Power savings for operation at or below 100 MHz by reducing on-chip regulator
output.
Four external interrupt inputs configurable as edge/level sensitive. All pins on PORT0
and PORT2 can be used as edge sensitive interrupt sources.
Non-maskable Interrupt (NMI) input.
Clock output function that can reflect the main oscillator clock, IRC clock, RTC clock,
CPU clock, USB clock, SPIFI clock, or the watchdog timer clock.
The Wakeup Interrupt Controller (WIC) allows the CPU to automatically wake up from
any priority interrupt that can occur while the clocks are stopped in deep sleep,
Power-down, and Deep Power-down modes.
Processor wake-up from Power-down mode via any interrupt able to operate during
Power-down mode (includes external interrupts, RTC interrupt, USB activity, Ethernet
wake-up interrupt, CAN bus activity, PORT0/2 pin interrupt, and NMI).
Brownout detect with separate threshold for interrupt and forced reset.
On-chip Power-On Reset (POR).
On-chip crystal oscillator with an operating range of 1 MHz to 25 MHz.
UM10562 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 3 — 12 March 2014 7 of 947
NXP Semiconductors
UM10562
Chapter 1: Introductory information
12 MHz Internal RC oscillator (IRC) trimmed to 1% accuracy that can optionally be
used as a system clock.
An on-chip PLL allows CPU operation up to the maximum CPU rate without the need
for a high-frequency crystal. May be run from the main oscillator or the internal RC
oscillator.
A second, dedicated PLL may be used for the USB and/or SPIFI interfaces in order to
allow added flexibility for the Main PLL settings.
Versatile pin function selection feature allows many possibilities for using on-chip
peripheral functions.
Boundary scan for simplified board testing.
Unique device serial number for identification purposes.
Available as 208-pin LQFP, 208-pin TFBGA, 180-pin TFBGA, 144-pin LQFP, 80-pin
LQFP packages.
1.3 Applications
Communications
Point-of-sale terminals, Web servers, multi-protocol bridges
Industrial/Medical
Automation controllers, application control, robotic controls, HVAC, PLC, inverters,
circuit breakers, medical scanning, security monitoring, motor drive, video intercom
Consumer/Appliance
Audio, MP3 decoders, alarm systems, displays, printers, scanners, small
appliances, fitness equipment
Automotive
Aftermarket, car alarms, GPS/Fleet Monitor
UM10562 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 3 — 12 March 2014 8 of 947
NXP Semiconductors
UM10562
Chapter 1: Introductory information
1.4 Ordering information
1.4.1 Part options summary
Table 1. Ordering information
Type number Package
Name Description Version
LPC4088
LPC4088FBD208 LQFP208 plastic low profile quad flat package; 208 leads; body 28 28 1.4 mm SOT459-1
LPC4088FET208 TFBGA208 plastic thin fine-pitch ball grid array package; 208 balls; body
15 15 0.7 mm
SOT950-1
LPC4088FET180 TFBGA180 thin fine-pitch ball grid array package; 180 balls; body 12 12 0.8 mm SOT570-2
LPC4088FBD144 LQFP144 plastic low profile quad flat package; 144 leads; body 20 20 1.4 mm SOT486-1
LPC4078
LPC4078FBD208 LQFP208 plastic low profile quad flat package; 208 leads; body 28 28 1.4 mm SOT459-1
LPC4078FET208 TFBGA208 plastic thin fine-pitch ball grid array package; 208 balls; body
15 15 0.7 mm
SOT950-1
LPC4078FET180 TFBGA180 thin fine-pitch ball grid array package; 180 balls; body 12 12 0.8 mm SOT570-2
LLPC4078FBD144 LQFP144 plastic low profile quad flat package; 144 leads; body 20 20 1.4 mm SOT486-1
LPC4078FBD80 LQFP80 plastic low-profile quad package; 80 leads; body 12 12 1.4 mm SOT315-1
LPC4078FBD100 LQFP100 plastic low profile quad flat package; 100 leads; body 14 14 1.4 mm SOT407-1
LPC4076
LPC4076FET180 TFBGA180 thin fine-pitch ball grid array package; 180 balls; body 12 12 0.8 mm SOT570-2
LPC4076FBD144 LQFP144 plastic low profile quad flat package; 144 leads; body 20 20 1.4 mm SOT486-1
LPC4074
LPC4074FBD144 LQFP144 plastic low profile quad flat package; 144 leads; body 20 20 1.4 mm SOT486-1
LPC4074FBD80 LQFP80 plastic low-profile quad package; 80 leads; body 12 12 1.4 mm SOT315-1
LPC4072
LPC4072FBD80 LQFP80 plastic low-profile quad package; 80 leads; body 12 12 1.4 mm SOT315-1
Table 2. Ordering options
Type number
Flash (kB)
SRAM (kB)
EEPROM (B)
EMC bus
width (bit)
LCD
Ethernet
USB
UART
QEI
SD/MMC
Comparator
FPU
Package
LPC4088
LPC4088FBD208 512 96 4032 32 yes yes H/O/D 5 yes yes yes yes LQFP208
LPC4088FET208 512 96 4032 32 yes yes H/O/D 5 yes yes yes yes TFBGA208
LPC4088FET180 512 96 4032 16 yes yes H/O/D 5 yes yes yes yes TFBGA180
LPC4088FBD144 512 96 4032 8 yes yes H/O/D 5 yes yes yes yes LQFP144
LPC4078
LPC4078FBD208 512 96 4032 32 no yes H/O/D 5 yes yes yes yes LQFP208
UM10562 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 3 — 12 March 2014 9 of 947
NXP Semiconductors
UM10562
Chapter 1: Introductory information
LPC4078FET208 512 96 4032 32 no yes H/O/D 5 yes yes yes yes TFBGA208
LPC4078FET180 512 96 4032 16 no yes H/O/D 5 yes yes yes yes TFBGA180
LPC4078FBD144 512 96 4032 8 no yes H/O/D 5 yes yes yes yes LQFP144
LPC4078FBD100 512 96 4032 - no yes H/O/D 5 yes yes yes yes LQFP100
LPC4078FBD80 512 96 4032 - no yes H/O/D 5 yes yes yes yes LQFP80
LPC4076
LPC4076FET180 256 80 2048 16 no yes H/O/D 5 yes yes yes yes TFBGA180
LPC4076FBD144 256 80 2048 8 no yes H/O/D 5 yes yes yes yes LQFP144
LPC4074
LPC4074FBD144 128 40 2048 - no no D 4 no no no no LQFP144
LPC4074FBD80 128 40 2048 - no no D 4 no no no no BGA80
LPC4072
LPC4072FBD80 64 24 2048 - no no D 4 no no no no LQFP80
Table 2. Ordering options
Type number
Flash (kB)
SRAM (kB)
EEPROM (B)
EMC bus
width (bit)
LCD
Ethernet
USB
UART
QEI
SD/MMC
Comparator
FPU
Package
UM10562 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 3 — 12 March 2014 10 of 947
NXP Semiconductors
UM10562
Chapter 1: Introductory information
1.5 Simplified block diagram
Fig 1. LPC408x/407x simplified block diagram
ARM Cortex-M4
with FPU
JTAG
interface
TEST/DEBUG
INTERFACE
General
Purpose
DMA
controller
System
bus
D-code
bus
I-code
bus
clock generation,
power control,
and other
system functions
SRAM
Up to 96 kB
Boot ROM
8 kB
Flash
Up to 512 kB
RST
Xtalin
Xtalout
clocks
and
controls
Flash
Accelerator
Ethernet
10/100
MAC
USB
OTG/
Host/
Device
LCD
panel
interface
Ethernet PHY
interface
USB bus or
tranceiver
LCD
panel
CRC
engine
General Purpose
I/O ports
EEPROM
Up to 4 kB
120229
Multilayer AHB Matrix
Static / Dynamic
Memory Controller
Ethernet
registers
USB
registers
LCD
registers
26-bit addr
32-bit data
APB slave group 0
Capture/Match timer 0 & 1
Watchdog oscillator Windowed Watchdog
SSP1
UARTs 0 & 1
CAN 1 & 2
12-bit ADC
Pin connect block
GPIO interrupt control
I
2
C 0 & 1
PWM0 & 1
APB slave group 1
Note:
- Orange shaded peripheral blocks
support General Purpose DMA.
- Yellow shaded peripheral blocks
include a dedicated DMA controller.
UARTs 2, 3, & 4
SSP0 & 2
System control
DAC
External interrupts
Motor control PWM
I
2
S
I
2
C 2
SD card interface
Capture/Match timer 2 & 3
Quadrature Encoder i/f
RTC Power Domain
32 kHz oscillator
Backup registers
(20 bytes)
ultra-low power
regulator
Vbat
ALARM
Real Time Clock
Event Inputs
Event Monitor/
Recorder
SPI Flash
Interface
Analog comparators
UM10562 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 3 — 12 March 2014 11 of 947
NXP Semiconductors
UM10562
Chapter 1: Introductory information
1.6 Architectural overview
The ARM Cortex-M4 includes three AHB-Lite buses, one system bus and the I-code and
D-code buses which are faster and are used similarly to Tightly Coupled Memory
interfaces: one bus dedicated for instruction fetch (I-code) and one bus for data access
(D-code). The use of two core buses allows for simultaneous operations if concurrent
operations target different devices.
The LPC408x/407x uses a multi-layer AHB matrix to connect the Cortex-M4 buses and
other bus masters to peripherals in a flexible manner that optimizes performance by
allowing peripherals on different slaves ports of the matrix to be accessed simultaneously
by different bus masters. Details of the multilayer matrix connections are shown in
Figure 2
.
APB peripherals are connected to the CPU via two APB buses using separate slave ports
from the multilayer AHB matrix. This allows for better performance by reducing collisions
between the CPU and the DMA controller. The APB bus bridges are configured to buffer
writes so that the CPU or DMA controller can write to APB devices without always waiting
for APB write completion.
1.7 ARM Cortex-M4 processor
The ARM Cortex-M4 is a general purpose 32-bit microprocessor, which offers high
performance and very low power consumption. The Cortex-M4 offers a Thumb-2
instruction set, low interrupt latency, interruptible/continuable multiple load and store
instructions, automatic state save and restore for interrupts, tightly integrated interrupt
controller, and multiple core buses capable of simultaneous accesses.
Pipeline techniques are employed so that all parts of the processing and memory systems
can operate continuously. Typically, while one instruction is being executed, its successor
is being decoded, and a third instruction is being fetched from memory.
Information about Cortex-M4 configuration options can be found in Section 40.1
.
1.8 On-chip flash memory system
The LPC408x/407x contains up to 512 kB of on-chip flash memory. A flash memory
accelerator maximizes performance for CPU accesses. This memory may be used for
both code and data storage. Programming of the flash memory may be accomplished in
several ways. It may be programmed In System via the serial port. The application
program may also erase and/or program the flash while the application is running,
allowing a great degree of flexibility for data storage field firmware upgrades, etc.
1.9 On-chip Static RAM
The LPC408x/407x contains up to 96 kB of on-chip static RAM memory. Up to 64 kB of
SRAM, accessible by the CPU and the General Purpose DMA controller, is on a
higher-speed bus. Up to 32 kB SRAM is provided in up to two additional 16 kB SRAM
blocks for use primarily for peripheral data. When both SRAMs are present, they are
situated on separate slave ports on the AHB multilayer matrix.
UM10562 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 3 — 12 March 2014 12 of 947
NXP Semiconductors
UM10562
Chapter 1: Introductory information
This architecture allows the possibility for CPU and DMA accesses to be separated in
such a way that there are few or no delays for the bus masters. It also allows separation of
data for different peripherals functions, in order to improve system performance. For
example, LCD DMA can be occurring in one SRAM while Ethernet DMA is occurring in
another, all while the CPU is using the Main SRAM for data and/or instruction access.
1.10 On-chip EEPROM
The LPC408x/407x contains up to 4,032 bytes of on-chip EEPROM memory. The
EEPROM is accessible only by the CPU.
UM10562 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 3 — 12 March 2014 13 of 947
NXP Semiconductors
UM10562
Chapter 1: Introductory information
1.11 Detailed block diagram
Fig 2. LPC408x/407x block diagram, CPU and buses
Multilayer
AHB Matrix
ARM Cortex-M4
with FPU
AHB to
APB bridge
AHB to
APB bridge
JTAG
interface
Periph. SRAM
Up to 16 kB
TEST/DEBUG
INTERFACE
General
Purpose
DMA
controller
System
bus
D-code
bus
I-code
bus
clock generation,
power control,
and other
system functions
Main SRAM
Up to 64 kB
Boot ROM
8 kB
Flash
Up to 512 kB
RST
Xtalin
Xtalout
APB slave group 1
Note:
- Orange shaded peripheral blocks
support General Purpose DMA.
- Yellow shaded peripheral blocks
include a dedicated DMA controller.
APB slave group 0
voltage regulator
clocks
and
controls
internal
power
Vdd
CLK
OUT
Capture/Match timer 0 & 1
Flash
Accelerator
Driver ROM
16 kB
Ethernet
10/100
MAC
USB
OTG/
Host/Dev
LCD
panel
interface
Static / Dynamic
Memory
Controller
D[31:0]
A[25:0]
control
Periph. SRAM
Up to 16 kB
Ethernet PHY
interface
USB bus or
tranceiver
LCD
panel
Watchdog oscillator Windowed Watchdog
Ethernet
registers
GPDMA
registers
CRC
engine
USB
registers
LCD
registers
HS
GPIO
Mem Ctl
registers
SSP1
UARTs 0 & 1
CAN 1 & 2
12-bit ADC
Pin connect block
GPIO interrupt control
I
2
C 0 & 1
PWM0 & 1
UARTs 2, 3, & 4
SSP0 & 2
System control
DAC
External interrupts
Motor control PWM
I
2
S
I
2
C 2
SD card interface
Capture/Match timer 2 & 3
Quadrature Encoder i/f
EEPROM
Up to 4 kB
120621
RTC Power Domain
32 kHz oscillator
Backup registers
(20 bytes)
ultra-low power
regulator
Vbat
ALARM
Real Time Clock
Event Inputs
Event Monitor/
Recorder
SPI Flash
Interface
UM10562 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 3 — 12 March 2014 14 of 947
2.1 Memory map and peripheral addressing
The ARM Cortex-M4 processor has a single 4 GB address space. The following table
shows how this space is used on the LPC408x/407x.
[1] Can be up to 256 MB, upper address 0x8FFF FFFF, if the address shift mode is enabled. See SCS register
bit 0 (Section 3.3.7.1
).
[2] Can be up to 128 MB, upper address 0x97FF FFFF, if the address shift mode is enabled. See SCS register
bit 0 (Section 3.3.7.1
).
UM10562
Chapter 2: LPC408x/407x Memory map
Rev. 3 — 12 March 2014 User manual
Table 3. Memory usage and details
Address range General Use Address range details and description
0x0000 0000 to
0x1FFF FFFF
On-chip non-volatile
memory
0x0000 0000 - 0x0007 FFFF For devices with 512 kB of flash memory.
0x0000 0000 - 0x0003 FFFF For devices with 256 kB of flash memory.
0x0000 0000 - 0x0001 FFFF For devices with 128 kB of flash memory.
On-chip SRAM 0x1000 0000 - 0x1000 FFFF For devices with 64 kB of Main SRAM.
0x1000 0000 - 0x1000 7FFF For devices with 32 kB of Main SRAM.
Boot ROM 0x1FFF 0000 - 0x1FFF 7FFF 8 kB Boot ROM with flash services.
Driver ROM 0x1FFF 8000 - 0x1FFF 1FFF 16 kB Driver ROM
0x2000 0000 to
0x3FFF FFFF
On-chip SRAM
(typically used for
peripheral data)
0x2000 0000 - 0x2000 1FFF Peripheral SRAM - bank 0 (first 8 kB)
0x2000 2000 - 0x2000 3FFF Peripheral SRAM - bank 0 (second 8 kB)
0x2000 4000 - 0x2000 7FFF Peripheral SRAM - bank 1 (16 kB)
AHB peripherals 0x2008 0000 - 0x200B FFFF See Section 2.3.1
for details
SPIFI buffer space 0x2800 0000 - 0x28FF FFFF SPIFI memory mapped access space
0x4000 0000 to
0x7FFF FFFF
APB Peripherals 0x4000 0000 - 0x4007 FFFF APB0 Peripherals, up to 32 peripheral blocks of
16 kB each.
0x4008 0000 - 0x400F FFFF APB1 Peripherals, up to 32 peripheral blocks of
16 kB each.
0x8000 0000 to
0xDFFF FFFF
Off-chip Memory via
the External Memory
Controller
Four static memory chip selects:
0x8000 0000 - 0x83FF FFFF Static memory chip select 0 (up to 64 MB)
[1]
0x9000 0000 - 0x93FF FFFF Static memory chip select 1 (up to 64 MB)
[2]
0x9800 0000 - 0x9BFF FFFF Static memory chip select 2 (up to 64 MB)
0x9C00 0000 - 0x9FFF FFFF Static memory chip select 3 (up to 64 MB)
Four dynamic memory chip selects:
0xA000 0000 - 0xAFFF FFFF Dynamic memory chip select 0 (up to 256MB)
0xB000 0000 - 0xBFFF FFFF Dynamic memory chip select 1 (up to 256MB)
0xC000 0000 - 0xCFFF FFFF Dynamic memory chip select 2 (up to 256MB)
0xD000 0000 - 0xDFFF FFFF Dynamic memory chip select 3 (up to 256MB)
0xE000 0000 to
0xE00F FFFF
Cortex-M4 Private
Peripheral Bus
0xE000 0000 - 0xE00F FFFF Cortex-M4 related functions, includes the NVIC
and System Tick Timer.
UM10562 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 3 — 12 March 2014 15 of 947
NXP Semiconductors
UM10562
Chapter 2: LPC408x/407x Memory map
2.2 Memory maps
The LPC408x/407x incorporates several distinct memory regions, shown in the following
figures. Figure 3
shows the overall map of the entire address space from the user
program viewpoint following reset. The interrupt vector area supports address remapping,
which is described later in this section.
Figure 3
and Table 5 show different views of the peripheral address space. The AHB
peripheral area is 2 megabyte in size, and is divided to allow for up to 128 peripherals.
The APB peripheral area is 1 megabyte in size and is divided to allow for up to 64
peripherals. Each peripheral of either type is allocated 16 kilobytes of space. This allows
simplifying the address decoding for each peripheral.
UM10562 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 3 — 12 March 2014 16 of 947
NXP Semiconductors
UM10562
Chapter 2: LPC408x/407x Memory map
Fig 3. System memory map
31-24
23
22-19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0x4008 0000
0x4006 0000
0x4005 C000
0x4004 C000
0x4004 8000
0x4004 4000
0x4004 0000
0x4003 C000
0x4003 8000
0x4003 4000
0x4003 0000
0x4002 C000
0x4002 8000
0x4002 4000
0x4002 0000
0x4001 C000
0x4001 8000
0x4001 4000
0x4001 0000
0x4000 C000
0x4000 8000
0x4000 4000
0x4000 0000
reserved
I2C1
reserved
CAN 2
CAN 1
CAN common
CAN AF registers
CAN AF RAM
ADC
SSP1
pin connect
GPIO interrupts
RTC
Comparators
I2C0
PWM1
PWM0
UART1
UART0
Timer1
Timer0
Watchdog timer
APB0 peripherals
7
6
5
4
3
2
1
0
0x200A 0000
0x2009 C000
0x2009 8000
0x2009 4000
0x2009 0000
0x2008 C000
0x2008 8000
0x2008 4000
0x2008 0000
EMC registers
GPIO
SPIFI registers
CRC engine
USB
LCD controller
Ethernet
GP DMA ctlr
AHB peripherals
I-Code and
D-Code
memory space
31
30-17
16
15
14
13-12
11
10
9
8
7
6
5
4
3
2
1-0
0x4010 0000
0x400F C000
0x400C 4000
0x400C 0000
0x400B C000
0x400B 8000
0x400B 0000
0x400A C000
0x400A 8000
0x400A 4000
0x400A 0000
0x4009 C000
0x4009 8000
0x4009 4000
0x4009 0000
0x4008 C000
0x4008 8000
0x4008 0000
system control
reserved
SD card
QEI
motor ctl PWM
reserved
SSP2
I2S
UART4
I2C2
UART3
UART2
Timer3
Timer2
DAC
SSP0
reserved
APB1 peripherals
0.5 GB
1 GB
2 GB
4 GB
active interrupt
vectors
0x0400
0x0000
reserved
private peripheral bus
external memory
(4 dynamic chip selects)
APB peripheral group 1
APB peripheral group 0
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
AHB peripherals
Boot ROM and Driver ROM
external memory
(4 static chip selects)
APB peripheral
bit-band addressing
SPIFI memory
mapped space
peripheral SRAM 1
peripheral SRAM 0
64 kB Main SRAM
512 kB flash memory
Memory space
0xFFFF FFFF
0xE010 0000
0xE004 0000
0xE000 0000
0xA000 0000
0x8000 0000
0x4400 0000
0x4200 0000
0x4010 0000
0x4008 0000
0x4000 0000
0x2900 0000
0x2800 0000
0x200C 0000
0x2000 4000
0x2000 0000
0x1FFF 0000
0x1001 0000
0x1000 0000
0x0008 0000
0x0000 0000
0x2400 0000
0x2200 0000
0x2008 0000
peripheral SRAM bit-band
addressing
120420
UM10562 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 3 — 12 March 2014 17 of 947
NXP Semiconductors
UM10562
Chapter 2: LPC408x/407x Memory map
2.3 On-chip peripherals
All peripheral register addresses are word aligned (to 32-bit boundaries) regardless of
their size. This eliminates the need for byte lane mapping hardware that would be required
to allow byte (8-bit) or half-word (16-bit) accesses to occur at smaller boundaries. An
implication of this is that word and half-word registers must be accessed all at once. For
example, it is not possible to read or write the upper byte of a word register separately.
2.3.1 AHB peripherals
The following table shows the addresses of peripheral functions that reside directly on the
AHB bus matrix. Complete register descriptions may be found in the relevant chapters.
2.3.2 APB peripheral addresses
The following table shows the address maps of the 2 APB buses. APB peripherals do not
use all of the 16 kB space allocated to them. Typically each device’s registers are
"aliased" or repeated at multiple locations within each 16 kB range.
Table 4. AHB peripherals and base addresses
AHB peripheral Address range Peripheral name
0 0x2008 0000 to 0x2008 3FFF General Purpose DMA controller
1 0x2008 4000 to 0x2008 7FFF Ethernet MAC
2 0x2008 8000 to 0x2008 BFFF LCD controller
3 0x2008 C000 to 0x2008 FFFF USB interface
4 0x2009 0000 to 0x2009 3FFF CRC engine
5 0x2009 4000 to 0x2009 7FFF SPIFI
6 0x2009 8000 to 0x2009 BFFF GPIO
7 0x2009 C000 to 0x2009 FFFF External Memory Controller
8 to 15 0x200A 0000 to 0x200B FFFF reserved
Table 5. APB0 peripherals and base addresses
APB0 peripheral Base address Peripheral name
0 0x4000 0000 Watchdog Timer
1 0x4000 4000 Timer 0
2 0x4000 8000 Timer 1
3 0x4000 C000 UART0
4 0x4001 0000 UART1
5 0x4001 4000 PWM0
6 0x4001 8000 PWM1
7 0x4001 C000 I
2
C0
8 0x4002 0000 Comparators
9 0x4002 4000 RTC and Event Monitor/Recorder
10 0x4002 8000 GPIO interrupts
11 0x4002 C000 Pin Connect Block
12 0x4003 0000 SSP1
13 0x4003 4000 ADC
UM10562 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 3 — 12 March 2014 18 of 947
NXP Semiconductors
UM10562
Chapter 2: LPC408x/407x Memory map
2.4 Memory re-mapping
The Cortex-M4 incorporates a mechanism that allows remapping the interrupt vector table
to alternate locations in the memory map. This is controlled via the Vector Table Offset
Register contained in the Cortex-M4. Refer to the NVIC description in Section 5.4
and to
the ARM Cortex-M4 User Guide referred to in Section 40.1
.
Boot ROM re-mapping
Following a hardware reset, the Boot ROM is temporarily mapped to address 0. This is
normally transparent to the user. However, if execution is halted immediately after reset by
a debugger, it should correct the mapping for the user. See Section 39.8
.
14 0x4003 8000 CAN Acceptance Filter RAM
15 0x4003 C000 CAN Acceptance Filter Registers
16 0x4004 0000 CAN Common Registers
17 0x4004 4000 CAN Controller 1
18 0x4004 8000 CAN Controller 2
19 to 22 0x4004 C000 to 0x4005 8000 reserved
23 0x4005 C000 I
2
C1
24 to 31 0x4006 0000 to 0x4007 C000 reserved
Table 6. APB1 peripherals and base addresses
APB1 peripheral Base address Peripheral name
0 to 1 0x4008 0000 to 0x4008 4000 reserved
2 0x4008 8000 SSP0
30x4008C000 DAC
4 0x4009 0000 Timer 2
5 0x4009 4000 Timer 3
6 0x4009 8000 UART2
70x4009C000 UART3
8 0x400A 0000 I
2
C2
9 0x400A 4000 UART4
10 0x400A 8000 I
2
S
11 0x400A C000 SSP2
12 to 13 0x400B 0000 to 0x400B 4000 reserved
14 0x400B 8000 Motor control PWM
15 0x400B C000 Quadrature Encoder Interface
16 0x400C 0000 SD card interface
17 to 30 0x400D 0000 to 0x400F 8000 reserved
31 0x400F C000 System control
Table 5. APB0 peripherals and base addresses
APB0 peripheral Base address Peripheral name
UM10562 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 3 — 12 March 2014 19 of 947
NXP Semiconductors
UM10562
Chapter 2: LPC408x/407x Memory map
2.5 AHB arbitration
The Multilayer AHB Matrix arbitrates between several masters, only if they attempt to
access the same matrix slave port at the same time. By default, the Cortex-M4 D-code
bus has the highest priority, followed by the I-Code bus. All other masters share a lower
priority.
The default priority can be altered by the user if care is taken. This may be particularly
useful if the LCD interface is used and it has difficulty getting sufficient data.
2.5.1 Matrix Arbitration register
The Matrix Arbitration register provides the ability to change the default AHB Matrix
arbitration priorities.
The values used for the various priorities are 3 = highest, 0 = lowest.
An example of a way to give priority to the LCD DMA is to use the value 0x0000 0C09.
The gives the LCD highest priority, D-code second priority, I-Code third priority, and all
others lowest priority.
Where in the memory space code and various types of data are located can be managed
to help minimize the need for arbitration and possible starvation of any of the bus masters,
as well as a need for changing the default priorities. For instance, LCD refresh from
off-chip memory connected to the EMC, while also executing off-chip code via the EMC
can cause a great deal of arbitration.
Table 7. Matrix Arbitration register (MATRIXARB - 0x400F C188) bit description
Bit Symbol Description Reset value
1:0 PRI_ICODE I-Code bus priority. Should be lower than PRI_DCODE for proper operation. 0x1
3:2 PRI_DCODE D-Code bus priority. 0x3
5:4 PRI_SYS System bus priority. 0
7:6 PRI_GPDMA General Purpose DMA controller priority. 0
9:8 PRI_ETH Ethernet DMA priority. 0
11:10 PRI_LCD LCD DMA priority. 0
13:12 PRI_USB USB DMA priority. 0
15:14 - Reserved. Read value is undefined, only zero should be written. NA
16 ROM_LAT ROM latency select. Set to 1 by the boot code. Special notes when operating at
above 60MHz: 1. When connecting the device for debugging, user should set this
bit for proper operation if the debugger bypasses the boot code. 2. If the value of
this register is altered by user code, this bit must not be inadvertently cleared.
1
31:17 - Reserved. Read value is undefined, only zero should be written. NA
UM10562 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.
User manual Rev. 3 — 12 March 2014 20 of 947
3.1 Introduction
The system control block includes several system features and control registers for a
number of functions that are not related to specific peripheral devices. These include:
Chip Reset (see Section 3.4)
Peripheral Reset control (see Section 3.5)
Brown-Out Detection (see Section 3.6)
External Interrupt Inputs (see Section 3.7)
Each type of function has its own registers if any are required and unneeded bits are
defined as reserved in order to allow future expansion.
3.1.1 Summary of clocking and power control functions
This section describes the generation of the various clocks needed for device operation,
and options of clock source selection, as well as power control and wake-up from reduced
power modes. Functions described in the following subsections include:
Oscillators (see Section 3.8)
PLLs (see Section 3.10)
Clock selection and dividers (see Section 3.11)
Power control (see Section 3.12)
Wake-up timer (see Section 3.13)
External clock output (see Section 3.14)
UM10562
Chapter 3: LPC408x/407x System and clock control
Rev. 3 — 12 March 2014 User manual
  • Page 1 1
  • Page 2 2
  • Page 3 3
  • Page 4 4
  • Page 5 5
  • Page 6 6
  • Page 7 7
  • Page 8 8
  • Page 9 9
  • Page 10 10
  • Page 11 11
  • Page 12 12
  • Page 13 13
  • Page 14 14
  • Page 15 15
  • Page 16 16
  • Page 17 17
  • Page 18 18
  • Page 19 19
  • Page 20 20
  • Page 21 21
  • Page 22 22
  • Page 23 23
  • Page 24 24
  • Page 25 25
  • Page 26 26
  • Page 27 27
  • Page 28 28
  • Page 29 29
  • Page 30 30
  • Page 31 31
  • Page 32 32
  • Page 33 33
  • Page 34 34
  • Page 35 35
  • Page 36 36
  • Page 37 37
  • Page 38 38
  • Page 39 39
  • Page 40 40
  • Page 41 41
  • Page 42 42
  • Page 43 43
  • Page 44 44
  • Page 45 45
  • Page 46 46
  • Page 47 47
  • Page 48 48
  • Page 49 49
  • Page 50 50
  • Page 51 51
  • Page 52 52
  • Page 53 53
  • Page 54 54
  • Page 55 55
  • Page 56 56
  • Page 57 57
  • Page 58 58
  • Page 59 59
  • Page 60 60
  • Page 61 61
  • Page 62 62
  • Page 63 63
  • Page 64 64
  • Page 65 65
  • Page 66 66
  • Page 67 67
  • Page 68 68
  • Page 69 69
  • Page 70 70
  • Page 71 71
  • Page 72 72
  • Page 73 73
  • Page 74 74
  • Page 75 75
  • Page 76 76
  • Page 77 77
  • Page 78 78
  • Page 79 79
  • Page 80 80
  • Page 81 81
  • Page 82 82
  • Page 83 83
  • Page 84 84
  • Page 85 85
  • Page 86 86
  • Page 87 87
  • Page 88 88
  • Page 89 89
  • Page 90 90
  • Page 91 91
  • Page 92 92
  • Page 93 93
  • Page 94 94
  • Page 95 95
  • Page 96 96
  • Page 97 97
  • Page 98 98
  • Page 99 99
  • Page 100 100
  • Page 101 101
  • Page 102 102
  • Page 103 103
  • Page 104 104
  • Page 105 105
  • Page 106 106
  • Page 107 107
  • Page 108 108
  • Page 109 109
  • Page 110 110
  • Page 111 111
  • Page 112 112
  • Page 113 113
  • Page 114 114
  • Page 115 115
  • Page 116 116
  • Page 117 117
  • Page 118 118
  • Page 119 119
  • Page 120 120
  • Page 121 121
  • Page 122 122
  • Page 123 123
  • Page 124 124
  • Page 125 125
  • Page 126 126
  • Page 127 127
  • Page 128 128
  • Page 129 129
  • Page 130 130
  • Page 131 131
  • Page 132 132
  • Page 133 133
  • Page 134 134
  • Page 135 135
  • Page 136 136
  • Page 137 137
  • Page 138 138
  • Page 139 139
  • Page 140 140
  • Page 141 141
  • Page 142 142
  • Page 143 143
  • Page 144 144
  • Page 145 145
  • Page 146 146
  • Page 147 147
  • Page 148 148
  • Page 149 149
  • Page 150 150
  • Page 151 151
  • Page 152 152
  • Page 153 153
  • Page 154 154
  • Page 155 155
  • Page 156 156
  • Page 157 157
  • Page 158 158
  • Page 159 159
  • Page 160 160
  • Page 161 161
  • Page 162 162
  • Page 163 163
  • Page 164 164
  • Page 165 165
  • Page 166 166
  • Page 167 167
  • Page 168 168
  • Page 169 169
  • Page 170 170
  • Page 171 171
  • Page 172 172
  • Page 173 173
  • Page 174 174
  • Page 175 175
  • Page 176 176
  • Page 177 177
  • Page 178 178
  • Page 179 179
  • Page 180 180
  • Page 181 181
  • Page 182 182
  • Page 183 183
  • Page 184 184
  • Page 185 185
  • Page 186 186
  • Page 187 187
  • Page 188 188
  • Page 189 189
  • Page 190 190
  • Page 191 191
  • Page 192 192
  • Page 193 193
  • Page 194 194
  • Page 195 195
  • Page 196 196
  • Page 197 197
  • Page 198 198
  • Page 199 199
  • Page 200 200
  • Page 201 201
  • Page 202 202
  • Page 203 203
  • Page 204 204
  • Page 205 205
  • Page 206 206
  • Page 207 207
  • Page 208 208
  • Page 209 209
  • Page 210 210
  • Page 211 211
  • Page 212 212
  • Page 213 213
  • Page 214 214
  • Page 215 215
  • Page 216 216
  • Page 217 217
  • Page 218 218
  • Page 219 219
  • Page 220 220
  • Page 221 221
  • Page 222 222
  • Page 223 223
  • Page 224 224
  • Page 225 225
  • Page 226 226
  • Page 227 227
  • Page 228 228
  • Page 229 229
  • Page 230 230
  • Page 231 231
  • Page 232 232
  • Page 233 233
  • Page 234 234
  • Page 235 235
  • Page 236 236
  • Page 237 237
  • Page 238 238
  • Page 239 239
  • Page 240 240
  • Page 241 241
  • Page 242 242
  • Page 243 243
  • Page 244 244
  • Page 245 245
  • Page 246 246
  • Page 247 247
  • Page 248 248
  • Page 249 249
  • Page 250 250
  • Page 251 251
  • Page 252 252
  • Page 253 253
  • Page 254 254
  • Page 255 255
  • Page 256 256
  • Page 257 257
  • Page 258 258
  • Page 259 259
  • Page 260 260
  • Page 261 261
  • Page 262 262
  • Page 263 263
  • Page 264 264
  • Page 265 265
  • Page 266 266
  • Page 267 267
  • Page 268 268
  • Page 269 269
  • Page 270 270
  • Page 271 271
  • Page 272 272
  • Page 273 273
  • Page 274 274
  • Page 275 275
  • Page 276 276
  • Page 277 277
  • Page 278 278
  • Page 279 279
  • Page 280 280
  • Page 281 281
  • Page 282 282
  • Page 283 283
  • Page 284 284
  • Page 285 285
  • Page 286 286
  • Page 287 287
  • Page 288 288
  • Page 289 289
  • Page 290 290
  • Page 291 291
  • Page 292 292
  • Page 293 293
  • Page 294 294
  • Page 295 295
  • Page 296 296
  • Page 297 297
  • Page 298 298
  • Page 299 299
  • Page 300 300
  • Page 301 301
  • Page 302 302
  • Page 303 303
  • Page 304 304
  • Page 305 305
  • Page 306 306
  • Page 307 307
  • Page 308 308
  • Page 309 309
  • Page 310 310
  • Page 311 311
  • Page 312 312
  • Page 313 313
  • Page 314 314
  • Page 315 315
  • Page 316 316
  • Page 317 317
  • Page 318 318
  • Page 319 319
  • Page 320 320
  • Page 321 321
  • Page 322 322
  • Page 323 323
  • Page 324 324
  • Page 325 325
  • Page 326 326
  • Page 327 327
  • Page 328 328
  • Page 329 329
  • Page 330 330
  • Page 331 331
  • Page 332 332
  • Page 333 333
  • Page 334 334
  • Page 335 335
  • Page 336 336
  • Page 337 337
  • Page 338 338
  • Page 339 339
  • Page 340 340
  • Page 341 341
  • Page 342 342
  • Page 343 343
  • Page 344 344
  • Page 345 345
  • Page 346 346
  • Page 347 347
  • Page 348 348
  • Page 349 349
  • Page 350 350
  • Page 351 351
  • Page 352 352
  • Page 353 353
  • Page 354 354
  • Page 355 355
  • Page 356 356
  • Page 357 357
  • Page 358 358
  • Page 359 359
  • Page 360 360
  • Page 361 361
  • Page 362 362
  • Page 363 363
  • Page 364 364
  • Page 365 365
  • Page 366 366
  • Page 367 367
  • Page 368 368
  • Page 369 369
  • Page 370 370
  • Page 371 371
  • Page 372 372
  • Page 373 373
  • Page 374 374
  • Page 375 375
  • Page 376 376
  • Page 377 377
  • Page 378 378
  • Page 379 379
  • Page 380 380
  • Page 381 381
  • Page 382 382
  • Page 383 383
  • Page 384 384
  • Page 385 385
  • Page 386 386
  • Page 387 387
  • Page 388 388
  • Page 389 389
  • Page 390 390
  • Page 391 391
  • Page 392 392
  • Page 393 393
  • Page 394 394
  • Page 395 395
  • Page 396 396
  • Page 397 397
  • Page 398 398
  • Page 399 399
  • Page 400 400
  • Page 401 401
  • Page 402 402
  • Page 403 403
  • Page 404 404
  • Page 405 405
  • Page 406 406
  • Page 407 407
  • Page 408 408
  • Page 409 409
  • Page 410 410
  • Page 411 411
  • Page 412 412
  • Page 413 413
  • Page 414 414
  • Page 415 415
  • Page 416 416
  • Page 417 417
  • Page 418 418
  • Page 419 419
  • Page 420 420
  • Page 421 421
  • Page 422 422
  • Page 423 423
  • Page 424 424
  • Page 425 425
  • Page 426 426
  • Page 427 427
  • Page 428 428
  • Page 429 429
  • Page 430 430
  • Page 431 431
  • Page 432 432
  • Page 433 433
  • Page 434 434
  • Page 435 435
  • Page 436 436
  • Page 437 437
  • Page 438 438
  • Page 439 439
  • Page 440 440
  • Page 441 441
  • Page 442 442
  • Page 443 443
  • Page 444 444
  • Page 445 445
  • Page 446 446
  • Page 447 447
  • Page 448 448
  • Page 449 449
  • Page 450 450
  • Page 451 451
  • Page 452 452
  • Page 453 453
  • Page 454 454
  • Page 455 455
  • Page 456 456
  • Page 457 457
  • Page 458 458
  • Page 459 459
  • Page 460 460
  • Page 461 461
  • Page 462 462
  • Page 463 463
  • Page 464 464
  • Page 465 465
  • Page 466 466
  • Page 467 467
  • Page 468 468
  • Page 469 469
  • Page 470 470
  • Page 471 471
  • Page 472 472
  • Page 473 473
  • Page 474 474
  • Page 475 475
  • Page 476 476
  • Page 477 477
  • Page 478 478
  • Page 479 479
  • Page 480 480
  • Page 481 481
  • Page 482 482
  • Page 483 483
  • Page 484 484
  • Page 485 485
  • Page 486 486
  • Page 487 487
  • Page 488 488
  • Page 489 489
  • Page 490 490
  • Page 491 491
  • Page 492 492
  • Page 493 493
  • Page 494 494
  • Page 495 495
  • Page 496 496
  • Page 497 497
  • Page 498 498
  • Page 499 499
  • Page 500 500
  • Page 501 501
  • Page 502 502
  • Page 503 503
  • Page 504 504
  • Page 505 505
  • Page 506 506
  • Page 507 507
  • Page 508 508
  • Page 509 509
  • Page 510 510
  • Page 511 511
  • Page 512 512
  • Page 513 513
  • Page 514 514
  • Page 515 515
  • Page 516 516
  • Page 517 517
  • Page 518 518
  • Page 519 519
  • Page 520 520
  • Page 521 521
  • Page 522 522
  • Page 523 523
  • Page 524 524
  • Page 525 525
  • Page 526 526
  • Page 527 527
  • Page 528 528
  • Page 529 529
  • Page 530 530
  • Page 531 531
  • Page 532 532
  • Page 533 533
  • Page 534 534
  • Page 535 535
  • Page 536 536
  • Page 537 537
  • Page 538 538
  • Page 539 539
  • Page 540 540
  • Page 541 541
  • Page 542 542
  • Page 543 543
  • Page 544 544
  • Page 545 545
  • Page 546 546
  • Page 547 547
  • Page 548 548
  • Page 549 549
  • Page 550 550
  • Page 551 551
  • Page 552 552
  • Page 553 553
  • Page 554 554
  • Page 555 555
  • Page 556 556
  • Page 557 557
  • Page 558 558
  • Page 559 559
  • Page 560 560
  • Page 561 561
  • Page 562 562
  • Page 563 563
  • Page 564 564
  • Page 565 565
  • Page 566 566
  • Page 567 567
  • Page 568 568
  • Page 569 569
  • Page 570 570
  • Page 571 571
  • Page 572 572
  • Page 573 573
  • Page 574 574
  • Page 575 575
  • Page 576 576
  • Page 577 577
  • Page 578 578
  • Page 579 579
  • Page 580 580
  • Page 581 581
  • Page 582 582
  • Page 583 583
  • Page 584 584
  • Page 585 585
  • Page 586 586
  • Page 587 587
  • Page 588 588
  • Page 589 589
  • Page 590 590
  • Page 591 591
  • Page 592 592
  • Page 593 593
  • Page 594 594
  • Page 595 595
  • Page 596 596
  • Page 597 597
  • Page 598 598
  • Page 599 599
  • Page 600 600
  • Page 601 601
  • Page 602 602
  • Page 603 603
  • Page 604 604
  • Page 605 605
  • Page 606 606
  • Page 607 607
  • Page 608 608
  • Page 609 609
  • Page 610 610
  • Page 611 611
  • Page 612 612
  • Page 613 613
  • Page 614 614
  • Page 615 615
  • Page 616 616
  • Page 617 617
  • Page 618 618
  • Page 619 619
  • Page 620 620
  • Page 621 621
  • Page 622 622
  • Page 623 623
  • Page 624 624
  • Page 625 625
  • Page 626 626
  • Page 627 627
  • Page 628 628
  • Page 629 629
  • Page 630 630
  • Page 631 631
  • Page 632 632
  • Page 633 633
  • Page 634 634
  • Page 635 635
  • Page 636 636
  • Page 637 637
  • Page 638 638
  • Page 639 639
  • Page 640 640
  • Page 641 641
  • Page 642 642
  • Page 643 643
  • Page 644 644
  • Page 645 645
  • Page 646 646
  • Page 647 647
  • Page 648 648
  • Page 649 649
  • Page 650 650
  • Page 651 651
  • Page 652 652
  • Page 653 653
  • Page 654 654
  • Page 655 655
  • Page 656 656
  • Page 657 657
  • Page 658 658
  • Page 659 659
  • Page 660 660
  • Page 661 661
  • Page 662 662
  • Page 663 663
  • Page 664 664
  • Page 665 665
  • Page 666 666
  • Page 667 667
  • Page 668 668
  • Page 669 669
  • Page 670 670
  • Page 671 671
  • Page 672 672
  • Page 673 673
  • Page 674 674
  • Page 675 675
  • Page 676 676
  • Page 677 677
  • Page 678 678
  • Page 679 679
  • Page 680 680
  • Page 681 681
  • Page 682 682
  • Page 683 683
  • Page 684 684
  • Page 685 685
  • Page 686 686
  • Page 687 687
  • Page 688 688
  • Page 689 689
  • Page 690 690
  • Page 691 691
  • Page 692 692
  • Page 693 693
  • Page 694 694
  • Page 695 695
  • Page 696 696
  • Page 697 697
  • Page 698 698
  • Page 699 699
  • Page 700 700
  • Page 701 701
  • Page 702 702
  • Page 703 703
  • Page 704 704
  • Page 705 705
  • Page 706 706
  • Page 707 707
  • Page 708 708
  • Page 709 709
  • Page 710 710
  • Page 711 711
  • Page 712 712
  • Page 713 713
  • Page 714 714
  • Page 715 715
  • Page 716 716
  • Page 717 717
  • Page 718 718
  • Page 719 719
  • Page 720 720
  • Page 721 721
  • Page 722 722
  • Page 723 723
  • Page 724 724
  • Page 725 725
  • Page 726 726
  • Page 727 727
  • Page 728 728
  • Page 729 729
  • Page 730 730
  • Page 731 731
  • Page 732 732
  • Page 733 733
  • Page 734 734
  • Page 735 735
  • Page 736 736
  • Page 737 737
  • Page 738 738
  • Page 739 739
  • Page 740 740
  • Page 741 741
  • Page 742 742
  • Page 743 743
  • Page 744 744
  • Page 745 745
  • Page 746 746
  • Page 747 747
  • Page 748 748
  • Page 749 749
  • Page 750 750
  • Page 751 751
  • Page 752 752
  • Page 753 753
  • Page 754 754
  • Page 755 755
  • Page 756 756
  • Page 757 757
  • Page 758 758
  • Page 759 759
  • Page 760 760
  • Page 761 761
  • Page 762 762
  • Page 763 763
  • Page 764 764
  • Page 765 765
  • Page 766 766
  • Page 767 767
  • Page 768 768
  • Page 769 769
  • Page 770 770
  • Page 771 771
  • Page 772 772
  • Page 773 773
  • Page 774 774
  • Page 775 775
  • Page 776 776
  • Page 777 777
  • Page 778 778
  • Page 779 779
  • Page 780 780
  • Page 781 781
  • Page 782 782
  • Page 783 783
  • Page 784 784
  • Page 785 785
  • Page 786 786
  • Page 787 787
  • Page 788 788
  • Page 789 789
  • Page 790 790
  • Page 791 791
  • Page 792 792
  • Page 793 793
  • Page 794 794
  • Page 795 795
  • Page 796 796
  • Page 797 797
  • Page 798 798
  • Page 799 799
  • Page 800 800
  • Page 801 801
  • Page 802 802
  • Page 803 803
  • Page 804 804
  • Page 805 805
  • Page 806 806
  • Page 807 807
  • Page 808 808
  • Page 809 809
  • Page 810 810
  • Page 811 811
  • Page 812 812
  • Page 813 813
  • Page 814 814
  • Page 815 815
  • Page 816 816
  • Page 817 817
  • Page 818 818
  • Page 819 819
  • Page 820 820
  • Page 821 821
  • Page 822 822
  • Page 823 823
  • Page 824 824
  • Page 825 825
  • Page 826 826
  • Page 827 827
  • Page 828 828
  • Page 829 829
  • Page 830 830
  • Page 831 831
  • Page 832 832
  • Page 833 833
  • Page 834 834
  • Page 835 835
  • Page 836 836
  • Page 837 837
  • Page 838 838
  • Page 839 839
  • Page 840 840
  • Page 841 841
  • Page 842 842
  • Page 843 843
  • Page 844 844
  • Page 845 845
  • Page 846 846
  • Page 847 847
  • Page 848 848
  • Page 849 849
  • Page 850 850
  • Page 851 851
  • Page 852 852
  • Page 853 853
  • Page 854 854
  • Page 855 855
  • Page 856 856
  • Page 857 857
  • Page 858 858
  • Page 859 859
  • Page 860 860
  • Page 861 861
  • Page 862 862
  • Page 863 863
  • Page 864 864
  • Page 865 865
  • Page 866 866
  • Page 867 867
  • Page 868 868
  • Page 869 869
  • Page 870 870
  • Page 871 871
  • Page 872 872
  • Page 873 873
  • Page 874 874
  • Page 875 875
  • Page 876 876
  • Page 877 877
  • Page 878 878
  • Page 879 879
  • Page 880 880
  • Page 881 881
  • Page 882 882
  • Page 883 883
  • Page 884 884
  • Page 885 885
  • Page 886 886
  • Page 887 887
  • Page 888 888
  • Page 889 889
  • Page 890 890
  • Page 891 891
  • Page 892 892
  • Page 893 893
  • Page 894 894
  • Page 895 895
  • Page 896 896
  • Page 897 897
  • Page 898 898
  • Page 899 899
  • Page 900 900
  • Page 901 901
  • Page 902 902
  • Page 903 903
  • Page 904 904
  • Page 905 905
  • Page 906 906
  • Page 907 907
  • Page 908 908
  • Page 909 909
  • Page 910 910
  • Page 911 911
  • Page 912 912
  • Page 913 913
  • Page 914 914
  • Page 915 915
  • Page 916 916
  • Page 917 917
  • Page 918 918
  • Page 919 919
  • Page 920 920
  • Page 921 921
  • Page 922 922
  • Page 923 923
  • Page 924 924
  • Page 925 925
  • Page 926 926
  • Page 927 927
  • Page 928 928
  • Page 929 929
  • Page 930 930
  • Page 931 931
  • Page 932 932
  • Page 933 933
  • Page 934 934
  • Page 935 935
  • Page 936 936
  • Page 937 937
  • Page 938 938
  • Page 939 939
  • Page 940 940
  • Page 941 941
  • Page 942 942
  • Page 943 943
  • Page 944 944
  • Page 945 945
  • Page 946 946
  • Page 947 947

PEAK-System PCAN-GPS Microcontroller Operating instructions

Type
Operating instructions

Ask a question and I''ll find the answer in the document

Finding information in a document is now easier with AI