NXP i.MX RT600 User guide

Type
User guide
UM11147
RT6xx User manual
Rev. 1.2 — 10 November 2020 User manual
Document information
Info Content
Keywords ARM Cortex-M33, Cadence Xtensa HiFi4 Audio DSP, microcontroller
Abstract RT6xx User Manual
UM11147 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.2 — 10 November 2020 2 of 1550
Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
NXP Semiconductors
UM11147
RT6xx User manual
Revision history
Rev Date Description
1.2 20201110
In the Syscon chapter, notes have been added to the clock generation section to clarify
synchronized versus non-synchronized clock multiplexers. Individual notes are also added to the
control register description for each clock selection multiplexer.
In the Syscon chapter, an important usage note for bits 4 through 12 of PDCLEEPCFG0 and
PDRUNCFG0.
In the Syscon chapter, in the section titled “Other system registers, group 0 (SYSTCTL0)”, added a
new register description for PD Wake Configuration (PDWAKECFG).
In the Power management chapter register descriptions for the PMC are added.
The Power API chapter has had many revisions, including some new APIs and updates to APIs.
In the GPIO chapter, a section describing limitations of GPIO interrupts is added. A diagram of GPIO
interrupts is also added.
In the Non-Secure Boot ROM chapter, a "No" exit is added to the "Initialization Successful?"
decision box in the figure titled "Top-level boot process". Added FlexSPI APIs flexspi_command_xfer
and flexspi_update_lut.
Typographic errors have been corrected and information added or clarified throughout the
document.
1.1 20200812
In the DMA controller chapter, the number of DMA channels is increased to 33 and shared registers
are added to support channel 32 (channels 0 through 31 are supported by the original shared
registers).
In the DMIC subsystem chapter, the table titled “Base clock sources for DMIC interface peripheral”,
is updated to change the accuracy of LPOSC (1m_lposc) to +/-10%.
In the Non-Secure Boot chapter, at the bottom of the “How does the RT6xx boot-up?” section,
important notes about boot voltages and OTP read/write voltages have been added.
In the Non-Secure Boot chapter, added subsection “42.5.1.1.1 Flash Power-Down”
In the Non-Secure Boot chapter, in the Serial Boot via USB HID section, added a note that USB boot
requires a 24 MHz external crystal.
Typographic errors have been corrected and information added or clarified throughout the
document.
1.0 20200221 Initial release of the RT6xx User Manual
UM11147 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.2 — 10 November 2020 3 of 1550
1.1 Introduction
The RT6xx is a family of dual-core microcontrollers for embedded applications featuring
an Arm Cortex-M33 CPU combined with a Cadence Xtensa HiFi4 advanced Audio Digital
Signal Processor CPU. The Cortex-M33 includes two hardware coprocessors providing
enhanced performance for an array of complex algorithms. The family offers a rich set of
peripherals and very low power consumption.
The Arm Cortex-M33 is a next generation core based on the ARMv8-M architecture that
offers system enhancements, such as ARM TrustZone® security, single-cycle digital
signal processing, and a tightly-coupled coprocessor interface, combined with low power
consumption, enhanced debug features, and a high level of support block integration. The
ARM Cortex-M33 CPU employs a 3-stage instruction pipe and includes an internal
prefetch unit that supports speculative branching. A hardware floating-point processor is
integrated into the core. On the RT6xx, the Cortex-M33 is augmented with two hardware
coprocessors providing accelerated support for additional DSP algorithms and
cryptography.
The Cadence Xtensa HiFi4 Audio DSP engine is a highly optimized audio processor
designed especially for efficient execution of audio and voice codecs and pre- and
post-processing modules. It supports four 32x32-bit MACs, some support for 72-bit
accumulators, limited ability to support eight 32x16-bit MACs, and the ability to issue two
64-bit loads per cycle. There is a vector floating point unit providing up to four
single-precision IEEE floating point MACs per cycle.
The RT6xx provides up to 4.5 MB of on-chip SRAM (plus an additional 128 KB of
tightly-coupled HiFi4 ram) and several high-bandwidth interfaces to access off-chip flash.
The FlexSPI flash interface supports two channels and includes an 32 KB cache and an
on-the-fly decryption engine. The RT6xx is designed to allow the Cortex-M33 to operate at
frequencies of up to 300 MHz and the HiFi4 DSP to operate at frequencies of up to 600
MHz.
1.1.1 Peripherals
The peripheral complement includes an FlexSPI flash interface with two channels, two
SDIO/eMMC interfaces, a High Speed USB device/host with on-chip PHY, a 12-bit, 1
MSamples/sec ADC with temperature sensor, an analog comparator, AES256 and Hash
engines with Physical Unclonable Function (PUF) key generation, a digital microphone
interface supporting up to eight channels and Voice Activation Detect, one I3C interface,
one high-speed SPI interface and eight configurable serial interfaces that can be
configured as a USART, SPI, I
2
C or I
2
S bus interface, each including a FIFO. When
configured as USARTs the serial interfaces have the option to operate in deep-sleep
mode using the 32 kHz oscillator or an external clock. There is a dedicated fractional baud
rate generator for each of the serial interfaces.
Timing peripherals include one advanced, 32-bit SCTimer/PWM module, five general
purpose 32-bit timer/counters with PWM capability, a 24-bit, multiple-channel multi-rate
timer, two windowed watchdog timers, a system tick timer with capture capability, and a
UM11147
Chapter 1: RT6xx Introductory information
Rev. 1.2 — 10 November 2020 User manual
UM11147 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.2 — 10 November 2020 4 of 1550
NXP Semiconductors
UM11147
Chapter 1: RT6xx Introductory information
Real-time clock module with independent power and a dedicated oscillator. A common OS
Event Timer is provided for synchronized event generation and timestamping between the
two CPUs.
There are two general purpose DMA engines which can service most of the peripherals
described in this section. The two DMA engines may be assigned to different CPUs and/or
one may be used for Secure operations, the other for Non-secure.
Mailboxes and hardware semaphores are provided to facilitate inter-core communication.
A variety of oscillators and PLLs are available as clock sources throughout the system.
1.1.2 Shared system SRAM
The entire system SRAM space of up to 4.5 MB is divided into up to 30 separate
partitions, which are accessible to both CPUs, both DMA engines, and all other AHB bus
masters. The HiFi4 CPU accesses the RAM via a dedicated 256-bit interface. Cache (with
single-cycle access) is provided on this interface to improve performance. All other
masters, including the Cortex-M33 processor and the DMA engines, access RAM via the
main 32-bit AHB bus. These accesses are all single-cycle. Hardware interface modules
arbitrate access to each RAM partition between the HiFi4 and the AHB bus.
Under software control, each of the 30 individual SRAM partitions can be used exclusively
as code or as data, dedicated either CPU, or shared among the various masters. Each
partition can be independently placed in a low-power retention mode or powered off
entirely.
In addition to the shared SRAM, a total of 128 KB (64 KB code, 64 KB data) of local,
Tightly-Coupled Memory (TCM) is provided for the exclusive use of the HiFi4 DSP
processor. Access to this memory is single-cycle.
1.2 Features
Control processor core
Arm Cortex-M33 processor, running at frequencies of up to 300 MHz.
Arm TrustZone.
Arm Cortex-M33 built-in Memory Protection Unit (MPU) supporting eight regions
Hardware Floating Point Unit (FPU).
Arm Cortex-M33 built-in Nested Vectored Interrupt Controller (NVIC).
Non-maskable Interrupt (NMI) input.
Two coprocessors for the Cortex-M33: a hardware accelerator for fixed and
floating point DSP functions (PowerQuad) and a Crypto/FFT engine (Casper). The
DSP coprocessor uses a bank of four dedicated 8 KB SRAMs. The Crypto/FFT
engine uses a bank of two 2 KB SRAMs that are also AHB accessible by the CPU
and the DMA engine.
Serial Wire Debug with eight break points, four watch points, and a debug
timestamp counter. It includes Serial Wire Output (SWO) trace and ETM trace.
Cortex-M33 System tick timer.
DSP processor core:
Cadence Xtensa HiFi4 Audio DSP processor, running at frequencies of up to
UM11147 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.2 — 10 November 2020 5 of 1550
NXP Semiconductors
UM11147
Chapter 1: RT6xx Introductory information
600 MHz.
Vector Floating Point Unit (VFPU). Up to four single-precision IEEE floating point
MACs per cycle.
Serial Wire Debug (shared with Cortex-M33 Control Domain CPU).
System tick timer.
Triple I/O power:
Three independent supplies powering different clusters of pins to permit interfacing
directly to off-chip peripherals operating at different supply levels.
On-chip Memory:
Up to 4.5 MB of system SRAM accessible by both CPUs and all (dedicated and
general purpose) DMA engines.
128 KB of local, Tightly-Coupled Memory dedicated to the DSP CPU.
96 KB (or more) of I & D cache for DSP accesses to shared system SRAM.
Additional SRAMs for USB traffic (16 KB), Cortex-M33 coprocessors (4 x 2 KB),
SDIO FIFOs (2 x 512 B dual-port), PUF secure key generation (2 KB), and FlexSPI
cache (32 KB).
16 K bits of OTP fuses for factory and user configuration.
Up to 256 KB ROM memory for factory-programmed drivers and APIs.
System boot from SPI, UART, FlexSPI flash, HS USB or eMMC via on-chip
bootloader software included in ROM.
Digital peripherals:
Two general purpose DMA engines, each with 32 channels and up to 25
programmable request/trigger sources.
- Can be configured such that one DMA is Secure and the other Non-secure and/or
one can be designated for use by the M33 CPU and the other by the DSP.
USB High Speed host/device controller with on-chip PHY and dedicated DMA
controller.
FlexSPI flash interface with 32 KB cache and dynamic decryption for
execute-in-place and supports DMA. The FlexSPI includes 2 ports: high-speed
channel A and lower speed channel B. Both ports support quad or octal operation.
An SD/eMMC memory card and SDIO interface with dedicated DMA controller.
Supports eMMC 5.0 with HS400/DDR operation on port 0.
Eight configurable universal serial interface modules (Flexcomm Interfaces). Each
module contains an integrated FIFO and DMA support. Flexcomms 0 through 7
can be configured as:
- A USART with dedicated fractional baud rate generation and flow-control
handshaking signals. The USART can optionally be clocked at 32 kHz and
operated when the chip is in reduced power mode, using either the 32 kHz clock or
an externally supplied clock.The USART also provides partial support for LIN2.2.
- An I
2
C-bus interface with multiple address recognition, and a monitor mode. It
supports 400 Kb/sec Fast-mode and 1 Mb/sec Fast-mode Plus. It also supports
3.4 Mb/sec high-speed when operating in slave mode.
- An SPI interface.
- An I
2
S (Inter-IC Sound) interface for digital audio input or output. Each I
2
S
supports up to four channel-pairs.
UM11147 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.2 — 10 November 2020 6 of 1550
NXP Semiconductors
UM11147
Chapter 1: RT6xx Introductory information
One high-speed SPI interface supporting 50 MHz operation.
One additional I2C interface available on some device configurations (see specific
device data sheet for more information). This interface is intended primarily for
communication with an external power management device (PMIC), but can be
used for other purposes when the application does not use an external PMIC.
One I3C bus interface.
A digital microphone interface supporting up to 8 channels with associated
decimators and Voice Activation Detect. One pair of channels can be streamed
directly to I
2
S. The DMIC supports DMA.
One 32-bit SCTimer/PWM module (SCT). Multi-purpose timer with extensive
event-generation, match/compare, and complex PWM and output control features.
- Supports DMA and can trigger external DMA events.
- Supports fractional match values for high resolution.
- State machine capability.
- 8 general-purpose inputs.
- 10 general-purpose/PWM outputs
- 16 matches or captures
- 16 events
- 32 states
Five general purpose, 32-bit timer/counter modules with PWM capability.
- Each timer supports four match outputs and four capture inputs.
- Match register auto-reload from shadow registers.
- It supports DMA and can trigger external DMA events.
24-bit multi-rate timer module with four channels, each capable of generating
repetitive interrupts at different programmable frequencies.
Two Windowed Watchdog Timers (WDT) with dedicated watchdog oscillator.
Frequency measurement module to determine the frequency of a selection of
on-chip or off-chip clock sources.
Real-Time Clock (RTC) with independent power supply and dedicated oscillator.
Integrated wake-up timer can be used to wake the device up from low-power
modes. The RTC includes eight 32-bit general purpose registers which can retain
content when power is removed from the rest of the chip.
Ultra-low power micro-tick timer running from the watchdog oscillator with capture
capability for timestamping. Can be used to wake the device up from low-power
modes.
64-bit OS Event Timer common to the Cortex-M33 and DSP processors with
individual match/capture and interrupt generation logic.
CRC engine block can calculate a CRC on supplied data using one of three
standard polynomials. The CRC engine supports DMA.
AES256 encryption module. The Random Number Generator can be used to
create keys. Key storage is in OTP. The AES supports DMA.
Physical Unclonable Function (PUF) key generation module.
SHA1/SHA2 Secure Hash Algorithm module. Supports secure boot, uses a
dedicated DMA controller.
Cryptography hardware coprocessor attached to Cortex-M33 CPU.
Analog peripherals:
UM11147 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.2 — 10 November 2020 7 of 1550
NXP Semiconductors
UM11147
Chapter 1: RT6xx Introductory information
One 12-bit ADC with sampling rates of 1 Msamples/sec and an enhanced ADC
controller. It supports up to 12 single-ended channels or 6 differential channels.
The ADC supports DMA.
Temperature sensor.
Analog comparator.
I/O peripherals:
Up to 147 general purpose I/O (GPIO) pins with configurable pull-up/pull-down
resistors. Ports can be written as words, half-words, bytes, or bits. The number of
GPIOs depends on the device package.
Individual GPIO pins can be used as edge and level sensitive interrupt sources,
each with its own interrupt vector.
All GPIO pins can contribute to either or both of two GPIO interrupts, with selection
of polarity and edge vs. level triggering.
A group of up to 8 GPIO pins can be selected for boolean pattern matching, which
can generate interrupts and/or drive a pattern-match output.
Adjustable output drivers.
JTAG boundary scan.
Clock generation unit:
Crystal oscillator with an operating range of 1 MHz to 25 MHz.
Internal 48 or 60 MHz IRC oscillator. Trimmed to ± 1% accuracy.
Internal 16 MHz IRC oscillator. Trimmed to ± 3% accuracy.
Internal 1 MHz low-power oscillator with 10% accuracy. Serves as the watchdog
oscillator and clock for the OS Event Timer and the Systick. Also available as the
system clock.
32 kHz real-time clock (RTC) oscillator that can optionally be used as a system
clock.
Main System PLL:
- Allows CPU operation up to the maximum rate without the need for a high
frequency crystal. May be run from the 16 MHz IRC, the 48/60 MHz IRC, or the
crystal.
- Second PLL output using an independent fractional divider provides an alternate
high-frequency clock source for the DSP CPU if the required frequency differs from
the main system clock.
- Two additional PLL outputs, each using independent fractional dividers, providing
alternative clock input sources to a number of peripherals.
Audio PLL for the audio subsystem.
480 MHz USB PLL (internal to the USB PHY).
Clock output function with divider that can reflect any of the internal clock sources.
Power control:
Main power supply is 1.8 V +/- 5%.
Analog supply is 1.71 V - 3.6 V.
Triple VDDIO supplies (can be shared or independent): 1.71 V - 3.6 V.
USB Supply: 3.0 V - 3.6 V.
UM11147 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.2 — 10 November 2020 8 of 1550
NXP Semiconductors
UM11147
Chapter 1: RT6xx Introductory information
Reduced power modes:
- Sleep mode: Clock shut down for each CPU independently.
- Deep-sleep mode: User selectable configuration via PDSLEEPCFG.
- Deep power-down mode: Power removed from the entire chip except in the
always-on domain.
- Full deep power-down mode: same as deep power-down mode, but external
power can be removed except for VDD_AO18.
- Each individual SRAM partition can be independently powered-off or put into a
low-power retain mode. Individual SRAMs can also have their clocks stopped
when not actually in use in order to save power.
- Ability to operate the synchronous serial interfaces in sleep or deep-sleep mode
as a slave or USART clocked by the 32 kHz RTC oscillator.
- Wake-up from low-power modes via interrupts from various peripherals including
the RTC and the OS Event Timer.
RBB/FBB to provide additional control over power/performance trade-offs.
Power-On Reset (POR).
Operating temperature range -20 °C to +70 °C
Available in VFBGA176, WLCSP114, and FOWLP249 packages. See the device data
sheet for details.
1.3 Block diagram
Figure 1, Figure 2, and Figure 3 show the RT6xx block diagram. In Figure 4, shaded
blocks support general purpose DMA and yellow shaded blocks include dedicated DMA
control.
UM11147 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.2 — 10 November 2020 9 of 1550
NXP Semiconductors
UM11147
Chapter 1: RT6xx Introductory information
Fig 1. Block diagram - overview
ARM
Cortex-M33
with FPU&MPU
Debug Interface
Security and
math
coprocessors
200221
clock generation,
power control, reset, and
other system functions
C-AHB S-AHB
AHB Multilayer Matrix
AHB
Peripherals
APB
Peripherals
Boot ROM
On-the-fly
AES
decryption
Octal / Quad
SPI memory
interface
cache
Tensilica
HiFi4 DSP
Instruction
TCM
Data
TCM
Instruction
cache
Data
cache
RAM interface
with arbitration
per port/partition
Shared RAM
(30 partitions,
totaling 4.5 MB)
DSP AHB slave interface
DSP AHB master interface
9 matrix
slave ports
slave ports
master ports
arbitration
DMAC
0
DMAC
1
Hash-
AES
SDIO/
eMMC
0
SDIO/
eMMC
1
UM11147 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.2 — 10 November 2020 10 of 1550
NXP Semiconductors
UM11147
Chapter 1: RT6xx Introductory information
Notes: Not all features are available in all packages. Flexcomm Interfaces 0 through7 each include USART, SPI, I2C, and I2S
functions. Grey-shaded blocks indicate peripherals that provide DMA requests or are otherwise able to trigger DMA transfers.
Hash-AES and SDIO include a dedicated DMA function.
Fig 2. Block diagram - Cortex-M33 view
Multilayer
AHB Matrix
ARM
Cortex-M33
with FPU&MPU
AHB to
APB bridge
Serial Wire Debug
(shared with DSP)
Debug Interface
SDIO/
eMMC
0
FlexSPI
Flash Intf
On-the-fly AES
decryp (OTFAD)
32 KB
cache
AHB to
APB bridge
PwrQuad
coprocessor
Casper
coprocessor
200221
JTAG boundary scan
HS GPIO
ports 0-4, 7
9 matrix ports connected to 4.5 MB shared RAM
partitions (see related text & figure for details)
RESETCLKOUT
clock generation,
power control,
and other
system functions
Power-On Reset
PLLs
Internal oscillators
Crystal, clock
inputs, etc.
FlexComm
Interfaces 4 to 7
FlexComm Intf
14 (SPI-only)
FlexComm Intf
15 (I2C-only)
DMA0
registers
DMA1
registers
Boot Rom
226 KB
CRC Engine
OS TimerSemaphore
Message
Unit
D-Mic: 8-ch, with
decimator, VAD, etc
16 Kb OTP
array
SDIO0
registers
Random
Number Gen
FlexSPI &
OTFAD regs
ADC: 12-bit,
10 channel
Temp
Sensor
SCTimer/
PWM
Secure
Control regs
USB RAM
(16KB)
HS USB
host regs
HS USB
device regs
Secure
GPIO 0
to DSP inbound PIF
(see related text & figure for details)
PwrQuad
registers
CASPER
RAM
Hash-Crypt
slave i/f
C-AHB S-AHB
APB slave group 0
I/O Configuration
RSTCTLa, CLKCTLa, SYSCTLa
PUF
Windowed Watchdog
0
MicroTick Timer
APB slave group 1
RSTCTLb, CLKCTLb, SYSCTLb
GPIO Pin Interrupt Control
5x 32-bit Timers (T0-4)
Periph Input Mux Selects
Multi-Rate Timer
Frequency Measure
I3C
32 kHz osc
& dividers
RTC Alarm Match
RTC Subsec Counter
RTC Alarm Counter
RTC Wake Counter
RTC count
Watchdog
clock
Windowed Watchdog
1
Watchdog clock
Always-on
Power Domain
Debug
Mailbox
FlexComm
Interfaces 0 to 3
ACMP
registers
DMAC
0
HiFi4
DSP
AHB
master
USB PHY
registers
channel A
channel B
DMAC
1
Hash-
AES
SDIO1
registers
P2 .. P10
P11
P1
P0
P12
P14
P13
P15
P17
P16
arbi-
tration
CASPER
registers
SDIO/
eMMC
1
HS USB
Bus
USB HS
controller
and PHY
UM11147 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.2 — 10 November 2020 11 of 1550
NXP Semiconductors
UM11147
Chapter 1: RT6xx Introductory information
Fig 3. Block diagram - DSP view
200214
Data cache
64 KB, 4-way,
256 bytes/line
Instruction cache
32 KB, 4-way,
256 bytes/line
Data TCM
64 KB, 4 banks
128 bits wide
Instruction TCM
64 KB
128 bits wide
Tensilica
HiFi4 DSP
8x 32 KB
RAM partitions
4x 64 KB
RAM partitions
4x 128 KB
RAM partitions
14x 256 KB
RAM partitions
DSP AHB slave
interface
(from AHB Matrix)
RAM interface
with arbitration
(one per RAM partition)
RAM interface
with arbitration
(one per RAM partition)
RAM interface
with arbitration
(one per RAM partition)
DSP AHB
master interface
AHB memory interface
(9 ports from
system AHB Matrix)
from 3 AHB
matrix ports
from 4 AHB
matrix ports
from 1 AHB
matrix port
from 1 AHB
matrix port
Total of 4.5 MB
Shared RAM
RAM interface
with arbitration
(one per RAM partition)
to AHB Matrix master
and FlexSPI arbiter
UM11147 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.2 — 10 November 2020 12 of 1550
NXP Semiconductors
UM11147
Chapter 1: RT6xx Introductory information
1.4 Architectural overview
The ARM Cortex-M33 includes two AHB-Lite buses, the system bus and the C-code bus.
The use of two core buses allows for simultaneous operations if concurrent operations
target different devices.
A multi-layer AHB matrix connects the CPU buses and other bus masters to peripherals in
a flexible manner that optimizes performance by allowing peripherals on different slaves
ports of the matrix to be accessed simultaneously by different bus masters. More
information on the multilayer matrix can be found in
Section 2.1.1. Connections in the
multilayer matrix are shown in
Figure 2. Note that while the AHB bus itself supports word,
halfword, and byte accesses, not all AHB peripherals need or provide that support.
1.5 ARM Cortex-M33 processor
The Cortex-M33 is a general purpose 32-bit microprocessor, which offers high
performance and very low power consumption. The Cortex-M33 offers an instruction set
based on Thumb®-2, low interrupt latency, interruptible/continuable multiple load and
store instructions, automatic state save and restore for interrupts, tightly integrated
interrupt controller, multiple core buses capable of simultaneous accesses, and a floating
point unit.
The RT6xx includes the Armv8-M Security Extension that adds security through code and
data protection features.
Information about Cortex-M33 configuration options can be found in
Chapter 49.
1.6 Xtensa HiFi4 advanced Audio Digital Signal Processor
The HiFi4 Audio Engine is present on selected RT6xx devices. The HiFi4 is a highly
optimized audio processor geared for efficient execution of audio and voice codecs and
pre- and post-processing modules. It includes support for four 32x32-bit MACs, some
support for 72-bit accumulators, limited ability to support eight 32x16-bit MACs, and the
ability to issue two 64-bit loads per cycle. There is a vector floating point unit included,
providing up to four single-precision IEEE floating point MACs per cycle. The HiFi4 Audio
Engine is a configuration option of the Xtensa LX6 processor. All HiFi4 Audio Engine
operations can be used as intrinsics in standard C/C++ applications.
Information about HiFi4 DSP configuration options can be found in
Chapter 49.
UM11147 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.2 — 10 November 2020 13 of 1550
2.1 General description
2.1.1 AHB multilayer matrix
The RT6xx uses a multi-layer AHB matrix to connect the CPU buses and other bus
masters to peripherals in a flexible manner that optimizes performance by allowing
peripherals that are on different slave ports/layers of the matrix to be accessed
simultaneously by different bus masters.
Figure 1 shows details of the available matrix
connections.
Remark: Attempted accesses by the CM33 to unused spaces between assigned memory
and peripheral spaces generally cause an exception. For the HiFi4 this is not the case.
2.1.2 Shared RAM overview
RT6xx devices provide up to 4.5 MB of shared SRAM. This SRAM is divided into a
collection of separate partitions. There are up to 30 such partitions ranging in size from 32
KB to 256 KB each. See
Section 2.1.8 “Shared RAM detail and Figure 1 through
Figure 3.
All SRAM partitions are accessible by both CPUs or by most other AHB bus masters
(including DMA controllers). The CM33 other AHB masters except the HiFi4 DSP access
the RAMs via the AHB matrix The HiFi4 DSP accesses these RAM partitions via a
separate path for better performance. A RAM interface associated with each partition
arbitrates between the AHB matrix and the DSP AHB interface. All of the SRAMs are
mapped into both the Code and Data address spaces of the M33 processor so any of the
partitions may be accessed from either the C-AHB or S-AHB buses. Partitions are
distributed among several AHB slave ports to minimize conflicts.
Remark: Arbitration in the RAM interface takes time to switch between the two buses
(AHB matrix and DSP AHB interface). It is therefore advantageous to design application
software such that any specific partition is accessed exclusively (or at least mostly) by one
bus at a time. For example, processors can signal each other when buffers are filled for
use by the other, and use a second buffer while the first is in use by the other processor.
2.1.3 Memory Protection Unit (MPU)
The Cortex-M33 processor has a memory protection unit (MPU) that provides fine grain
memory control, enabling applications to implement security privilege levels, separating
code, data and stack on a task-by-task basis. Such requirements are critical in many
embedded applications.
The MPU register interface is located on the private peripheral bus and is described in
detail in
Ref. 1 “Cortex-M33 DGUG.
UM11147
Chapter 2: RT6xx Memory map
Rev. 1.2 — 10 November 2020 User manual
UM11147 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.2 — 10 November 2020 14 of 1550
NXP Semiconductors
UM11147
Chapter 2: RT6xx Memory map
2.1.4 TrustZone and Cortex-M33 busing on this device
The implementation of ARM TrustZone on this device involves using address bit 28 to
divide the address space into potential Secure and Non-secure regions. Address bit 28 is
not decoded in memory access hardware, so each physical location appears in two
places on whatever bus they are located on. Other hardware determines which kinds of
accesses (including Non-secure Callable) are actually allowed for any particular address.
In addition, the shared RAM is generally expected to be used for both code and data, in
different balance for different applications. Some applications may require a great deal of
code and little data, others may require most of the shared RAM to be used for data. For
this reason, the entire shared RAM appears on both the code bus and the data bus of the
Cortex-M33. Code can be located at addresses that are on the code bus, data can be
located at addresses that are on the data bus. As long as code and data are contained in
shared RAM that is connected on different AHB matrix slave ports, each can be accessed
simultaneously on the appropriate bus.
Table 1 shows the overall mapping of the code and data buses for Secure and
Non-secure accesses to various device resources. The block diagrams in
Chapter 1
RT6xx Introductory information may also be useful in understanding the memory map.
In addition to the fixed mapping of Secure and Non-secure spaces, “checker” hardware
present on all AHB matrix ports confirms the types of access allowed for each peripheral
or memory range (with a granularity of 32 memory ranges for each port). This is described
in more detail in
Chapter 46 “RT6xx Trusted execution environment.
Remark: In the peripheral description chapters of this manual, only the native
(Non-secure) base address is noted, Secure base addresses can be found in this chapter
or created algorithmically where needed.
[1] The HiFi4 accesses shared RAM via a separate connection, not using the AHB matrix.
[2] The size shown for peripherals spaces indicates the space allocated in the memory map, not the actual
space used by the peripheral.
[3] Some AHB and APB peripherals are not accessible to the HiFi4.
[4] Selected areas of Secure regions may be marked as Non-secure Callable.
2.1.5 Links to specific memory map descriptions and tables:
Section 2.1.6 “Device overview
Section 2.1.7 “Cortex-M33 overview
Section 2.1.8 “Shared RAM detail
Table 1. TrustZone and Cortex-M33 general mapping
Start address End address TrustZone CM-33 bus CM-33 usage
0x0000 0000 0x0FFF FFFF Non-secure Code Shared RAM, Boot ROM, FlexSPI memory mapped region.
0x1000 0000 0x1FFF FFFF Secure Code Same as above
0x2000 0000 0x2FFF FFFF Non-secure Data Shared RAM, CM33 access to HiFi4 TCMs via inbound PIF.
Non-cacheable FlexSPI memory mapped region for DSP only.
0x3000 0000 0x3FFF FFFF Secure Data Same as above
0x4000 0000 0x4FFF FFFF Non-secure Data AHB and APB peripherals.
0x5000 0000 0x5FFF FFFF Secure Data Same as above
UM11147 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.2 — 10 November 2020 15 of 1550
NXP Semiconductors
UM11147
Chapter 2: RT6xx Memory map
Section 2.1.9 “APB peripherals
Section 2.1.10 “AHB peripherals
Section 2.1.11 “HiFi4 memory map
2.1.6 Device overview
The RT6xx incorporates several distinct memory regions. Table 2 gives a simplified view
of the overall map of the entire address space from the user program viewpoint following
reset. The figure indicates the main address regions and how (or whether) they related to
both the Cortex-M33 and the HiFi4.
[1] The HiFi4 accesses shared RAM via a separate connection, not using the AHB matrix.
[2] Access to the FlexSPI memory space can be enabled or disabled for the CM33 and the HiFi4. See
Chapter 33, Section 4.5.5.15, and Section 4.5.5.16.
Table 2. Device overview memory map
Start addr End addr Size Cortex-M33 function HiFi4 function
0x0000 0000 0x0047 FFFF 4.5 MB Shared RAM via the CM33 code bus (Non-secure
access). See
Section 2.1.8.
Shared RAM - cacheable
access. See Section 2.1.11.
[1]
0x0300 0000 0x0303 FFFF 256 KB Boot ROM (Non-secure access). See Section 2.1.7 -
0x0800 0000 0x0FFF FFFF 128 MB FlexSPI memory mapped space with cache and
on-the-fly AES decryption (Non-secure access).
See
Section 2.1.7.
[2]
FlexSPI memory mapped
space, cacheable. See
Section 2.1.11.
[2]
0x1000 0000 0x1047 FFFF 4.5 MB Shared RAM via the CM33 code bus (Secure
access). See
Section 2.1.8.
[3]
-
0x1300 0000 0x1303 FFFF 256 KB Boot ROM (Secure access). See Section 2.1.7 -
0x1800 0000 0x1FFF FFFF 128 MB FlexSPI memory mapped space with cache and
on-the-fly AES decryption (Secure access). See
Section 2.1.7.
-
0x2000 0000 0x2047 FFFF 4.5 MB Shared RAM via the CM33 data bus (Non-secure
access). See
Section 2.1.8.
Shared RAM - non-cacheable
access. See Section 2.1.11.
[1]
0x2400 0000 0x2400 FFFF 64 KB CM33 access to HiFi4 data TCM via inbound PIF
(Non-secure access). See Section 2.1.7.
HiFi4 data TCM - 4 interleaved
banks. See Section 2.1.11.
0x2402 0000 0x2402 FFFF 64 KB Cortex-M33 access to HiFi4 instruction TCM via
inbound PIF (Non-secure access). See
Section 2.1.7.
HiFi4 instruction TCM. See
Section 2.1.11.
0x3000 0000 0x3047 FFFF 4.5 MB Shared RAM via the CM33 data bus (secure
access). See Section 2.1.8.
[3]
-
0x3400 0000 0x3400 FFFF 64 KB CM33 access to HiFi4 data TCM via inbound PIF
(Secure access). See Section 2.1.7.
-
0x3402 0000 0x3402 FFFF 64 KB CM33 access to HiFi4 instruction TCM via inbound
PIF (Secure access). See
Section 2.1.7.
HiFi4 instruction TCM. See
Section 2.1.11.
0x4000 0000 0x4003 FFFF 256 KB
[4]
APB peripherals (Non-secure access). See
Section 2.1.9.
APB peripherals. See
Section 2.1.11.
[5]
0x4010 0000 0x4015 FFFF 400 KB
[4]
AHB peripherals (Non-secure access). See
Section 2.1.10.
AHB peripherals. See
Section 2.1.11.
[5]
0x5000 0000 0x5003 FFFF 256 KB
[4]
APB peripherals (Secure access). See
Section 2.1.9.
-
0x5010 0000 0x5015 FFFF 400 KB
[4]
AHB peripherals (Secure access). See
Section 2.1.10.
-
UM11147 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.2 — 10 November 2020 16 of 1550
NXP Semiconductors
UM11147
Chapter 2: RT6xx Memory map
[3] Selected areas of Secure regions may be marked as Non-secure Callable.
[4] The size shown for peripheral spaces indicates the space allocated in the memory map, not the actual
space used by the peripheral.
[5] Some AHB and APB peripherals are not accessible to the HiFi4.
UM11147 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.2 — 10 November 2020 17 of 1550
NXP Semiconductors
UM11147
Chapter 2: RT6xx Memory map
2.1.7 Cortex-M33 overview
Table 3 gives a more detailed memory map as seen by the Cortex-M33. The purpose of
the four address spaces for the shared RAMs is outlined at the beginning of this chapter.
The details of which shared RAM regions are on which AHB matrix slave ports can be
seen here. Further details given in
Section 2.1.8.
[1] Gaps between AHB matrix slave ports are not shown.
[2] Details of this space may be found in
Section 2.1.9 “APB peripherals.
[3] Details of this space may be found in
Section 2.1.10 “AHB peripherals.
Table 3. Cortex-M33 overview memory map
AHB
port
Non-secure
start address
Non-secure
end address
Secure start
address
Secure end
address
Function
[1]
2 0x0000 0000 0x0000 FFFF 0x1000 0000 0x1000 FFFF Shared RAM on CM33 code bus, partitions 0 to 1.
3 0x0001 0000 0x0001 FFFF 0x1001 0000 0x1001 FFFF Shared RAM on CM33 code bus, partitions 2 to 3.
4 0x0002 0000 0x0003 FFFF 0x1002 0000 0x1003 FFFF Shared RAM on CM33 code bus, partitions 4 to 7.
5 0x0004 0000 0x0007 FFFF 0x1004 0000 0x1007 FFFF Shared RAM on CM33 code bus, partitions 8 to 11.
6 0x0008 0000 0x000F FFFF 0x1008 0000 0x100F FFFF Shared RAM on CM33 code bus, partitions 12 to 15.
7 0x0010 0000 0x001F FFFF 0x1010 0000 0x101F FFFF Shared RAM on CM33 code bus, partitions 16 to 19.
8 0x0020 0000 0x002F FFFF 0x1020 0000 0x102F FFFF Shared RAM on CM33 code bus, partitions 20 to 23.
9 0x0030 0000 0x003F FFFF 0x1030 0000 0x103F FFFF Shared RAM on CM33 code bus, partitions 24 to 27.
10 0x0040 0000 0x0047 FFFF 0x1040 0000 0x1047 FFFF Shared RAM on CM33 code bus, partitions 28 to 29.
0 0x0300 0000 0x0303 FFFF 0x1300 0000 0x1303 FFFF Boot ROM
1 0x0800 0000 0x0FFF FFFF 0x1800 0000 0x1FFF FFFF FlexSPI memory mapped space with cache and
on-the-fly AES decryption.
2 0x2000 0000 0x2000 FFFF 0x3000 0000 0x3000 FFFF Shared RAM on CM33 data bus, partitions 0 to 1.
3 0x2001 0000 0x2001 FFFF 0x3001 0000 0x3001 FFFF Shared RAM on CM33 data bus, partitions 2 to 3.
4 0x2002 0000 0x2003 FFFF 0x3002 0000 0x3003 FFFF Shared RAM on CM33 data bus, partitions 4 to 7.
5 0x2004 0000 0x2007 FFFF 0x3004 0000 0x3007 FFFF Shared RAM on CM33 data bus, partitions 8 to 11.
6 0x2008 0000 0x200F FFFF 0x3008 0000 0x300F FFFF Shared RAM on CM33 data bus, partitions 12 to 15.
7 0x2010 0000 0x201F FFFF 0x3010 0000 0x301F FFFF Shared RAM on CM33 data bus, partitions 16 to 19.
8 0x2020 0000 0x202F FFFF 0x3020 0000 0x302F FFFF Shared RAM on CM33 data bus, partitions 20 to 23.
9 0x2030 0000 0x203F FFFF 0x3030 0000 0x303F FFFF Shared RAM on CM33 data bus, partitions 24 to 27.
10 0x2040 0000 0x2047 FFFF 0x3040 0000 0x3047 FFFF Shared RAM on CM33 data bus, partitions 28 to 29.
11 0x2400 0000 0x240F FFFF 0x3400 0000 0x340F FFFF HiFi4 inbound PIF. Allows AHB access to HiFi4
Instruction and Data TCMs.
12 0x4000 0000 0x4001 FFFF 0x5000 0000 0x5001 FFFF AHB to APB bridge 0
[2]
0x4002 0000 0x4003 FFFF 0x5002 0000 0x5003 FFFF AHB to APB bridge 1
[2]
13 0x4010 0000 0x4011 FFFF 0x5010 0000 0x5011 FFFF AHB peripherals
[3]
14 0x4012 0000 0x4012 FFFF 0x5012 0000 0x5012 FFFF AHB peripherals
[3]
15 0x4013 0000 0x4013 FFFF 0x5013 0000 0x5013 FFFF AHB peripherals
[3]
16 0x4014 0000 0x4014 FFFF 0x5014 0000 0x5014 FFFF AHB peripherals
[3]
17 0x4015 0000 0x4015 FFFF 0x5015 0000 0x5015 FFFF AHB peripherals
[3]
UM11147 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.2 — 10 November 2020 18 of 1550
NXP Semiconductors
UM11147
Chapter 2: RT6xx Memory map
2.1.8 Shared RAM detail
Table 4 reflects both the Cortex-M33 and DSP views of the RAM partitions and address.
The AHB matrix port is only relevant to the Cortex-M33 because the DSP accesses these
RAMs via a separate bus.
The partitions shown in
Table 4 are mirrored in all four shared RAM address regions for
the Cortex-M33. The purpose of those regions is outlined in
Section 2.1.4, while Table 5
gives the base addresses for the four regions.
A variety of shared RAM partition sizes are provided to allow more flexibility in assigning
the uses of those spaces. For each application, shard RAM usage should be planned to
minimize collision of accesses by the two buses of the Cortex-M33, as well as other bus
masters, including DMA controllers and the HiFi4.
A best case would be if each shared RAM partition is accessed by only one master at any
particular time, “ownership” being passed to another master (for instance) when a buffer is
filled from a peripheral, a block of data is processed by an algorithm, etc.
To summarize, access collisions can occur under the following conditions.
On the AHB matrix: when two AHB masters access a resource on the same slave port
at the same time. AHB masters include the HiFi4 when it is using the AHB matrix, not
when it is accessing shared RAM.
HiFi4 accessing shared RAM: when the HiFi4 and an AHB master access the same
shared RAM partition at the same time. Note that in this case, the access collision
happens at the partition, not at the slave port. Since there are multiple partitions for
each slave port, this allows even more opportunity to avoid collisions.
Table 4. Shared RAM memory map: offsets for all types of shared memory accesses
AHB port Partition Start offset End offset Partition Size Overall Size
2 0 0x00 0000 0x00 7FFF 32 KB 32 KB
1 0x00 8000 0x00 FFFF 32 KB 64 KB
3 2 0x01 0000 0x01 7FFF 32 KB 96 KB
3 0x01 8000 0x01 FFFF 32 KB 128 KB
4 4 0x02 0000 0x02 7FFF 32 KB 160 KB
5 0x02 8000 0x02 FFFF 32 KB 192 KB
6 0x03 0000 0x03 7FFF 32 KB 224 KB
7 0x03 8000 0x03 FFFF 32 KB 256 KB
5 8 0x04 0000 0x04 FFFF 64 KB 320 KB
9 0x05 0000 0x05 FFFF 64 KB 384 KB
10 0x06 0000 0x06 FFFF 64 KB 448 KB
11 0x07 0000 0x07 FFFF 64 KB 512 KB
6 12 0x08 0000 0x09 FFFF 128 KB 640 KB
13 0x0A 0000 0x0B FFFF 128 KB 768 KB
14 0x0C 0000 0x0D FFFF 128 KB 896 KB
15 0x0E 0000 0x0F FFFF 128 KB 1024 KB (1 MB)
UM11147 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.2 — 10 November 2020 19 of 1550
NXP Semiconductors
UM11147
Chapter 2: RT6xx Memory map
7 16 0x10 0000 0x13 FFFF 256 KB 1280 KB (1.25 MB)
17 0x14 0000 0x17 FFFF 256 KB 1536 KB (1.5 MB)
18 0x18 0000 0x1B FFFF 256 KB 1792 KB (1.75 MB)
19 0x1C 0000 0x1F FFFF 256 KB 2048 KB (2 MB)
8 20 0x20 0000 0x23 FFFF 256 KB 2304 KB (2.25 MB)
21 0x24 0000 0x27 FFFF 256 KB 2560 KB (2.5 MB)
22 0x28 0000 0x2B FFFF 256 KB 2816 KB (2.75 MB)
23 0x2C 0000 0x2F FFFF 256 KB 3072 KB (3 MB)
9 24 0x30 0000 0x33 FFFF 256 KB 3328 KB (3.25 MB)
25 0x34 0000 0x37 FFFF 256 KB 3584 KB (3.5 MB)
26 0x38 0000 0x3B FFFF 256 KB 3840 KB (3.75 MB)
27 0x3C 0000 0x3F FFFF 256 KB 4096 KB (4 MB)
10 28 0x40 0000 0x43 FFFF 256 KB 4352 KB (4.25 MB)
29 0x44 0000 0x47 FFFF 256 KB 4608 KB (4.5 MB)
Table 5. Base addresses for different types of shared memory accesses
Base address Cortex-M33 HiFi4
0x0000 0000 Code bus - Non-secure Cacheable (see
Section 2.1.11.1)
0x1000 0000 Code bus - Secure -
0x2000 0000 Data bus - Non-secure Non-cacheable (see
Section 2.1.11.1)
0x3000 0000 Data bus - Secure -
Table 4. Shared RAM memory map: offsets for all types of shared memory accesses
AHB port Partition Start offset End offset Partition Size Overall Size
UM11147 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.
User manual Rev. 1.2 — 10 November 2020 20 of 1550
NXP Semiconductors
UM11147
Chapter 2: RT6xx Memory map
2.1.9 APB peripherals
Tabl e 6 provides details of the addresses for APB peripherals. APB peripherals have both
Secure and Non-secure access possibilities, and are accessible by the HiFi4 unless
secured.
[1] Reset, clock, and system control functions are separated into 2 groups to allow the possibility of securing
group 0 while leaving group 1 unsecured.
Table 6. APB peripherals memory map
AHB
port
APB
bridge
Non-secure
base address
Secure
base address
Peripheral
12 0 0x4000 0000 0x5000 0000 RSTCTL0. Reset control group 0.
[1]
0x4000 1000 0x5000 1000 CLKCTL0. Clock control group 0.
[1]
0x4000 2000 0x5000 2000 SYSCTL0. System control group 0.
[1]
0x4000 4000 0x5000 4000 IOCON. Pin function selection and pin control setup.
0x4000 6000 0x5000 6000 PUF. Physical unclonable function cryptographic key generation.
0x4000 E000 0x5000 E000 WWDT0 (Windowed watchdog timer 0).
0x4000 F000 0x5000 F000 Utick (Micro-tick timer).
1 0x4002 0000 0x5002 0000 RSTCTL1. Reset control group 1.
[1]
0x4002 1000 0x5002 1000 CLKCTL1. Clock control group 1.
[1]
0x4002 2000 0x5002 2000 SYSCTL1. System control group 1.
[1]
0x4002 5000 0x5002 5000 GPIO pin interrupts (PINT).
0x4002 6000 0x5002 6000 Input multiplexing controls.
0x4002 8000 0x5002 8000 CT32B0 (standard counter/timer 0).
0x4002 9000 0x5002 9000 CT32B1 (standard counter/timer 1).
0x4002 A000 0x5002 A000 CT32B2 (standard counter/timer 2).
0x4002 B000 0x5002 B000 CT32B3 (standard counter/timer 3).
0x4002 C000 0x5002 C000 CT32B4 (standard counter/timer 4).
0x4002 D000 0x5002 D000 MRT (Multi-Rate Timer).
0x4002 E000 0x5002 E000 WWDT1 (Windowed watchdog timer 1).
0x4002 F000 0x5002 F000 Frequency measure unit.
0x4003 0000 0x5003 0000 RTC & Wake-up timer.
0x4003 3000 0x5003 3000 FlexSPI cache configuration
0x4003 6000 0x5003 6000 I3C interface.
  • Page 1 1
  • Page 2 2
  • Page 3 3
  • Page 4 4
  • Page 5 5
  • Page 6 6
  • Page 7 7
  • Page 8 8
  • Page 9 9
  • Page 10 10
  • Page 11 11
  • Page 12 12
  • Page 13 13
  • Page 14 14
  • Page 15 15
  • Page 16 16
  • Page 17 17
  • Page 18 18
  • Page 19 19
  • Page 20 20
  • Page 21 21
  • Page 22 22
  • Page 23 23
  • Page 24 24
  • Page 25 25
  • Page 26 26
  • Page 27 27
  • Page 28 28
  • Page 29 29
  • Page 30 30
  • Page 31 31
  • Page 32 32
  • Page 33 33
  • Page 34 34
  • Page 35 35
  • Page 36 36
  • Page 37 37
  • Page 38 38
  • Page 39 39
  • Page 40 40
  • Page 41 41
  • Page 42 42
  • Page 43 43
  • Page 44 44
  • Page 45 45
  • Page 46 46
  • Page 47 47
  • Page 48 48
  • Page 49 49
  • Page 50 50
  • Page 51 51
  • Page 52 52
  • Page 53 53
  • Page 54 54
  • Page 55 55
  • Page 56 56
  • Page 57 57
  • Page 58 58
  • Page 59 59
  • Page 60 60
  • Page 61 61
  • Page 62 62
  • Page 63 63
  • Page 64 64
  • Page 65 65
  • Page 66 66
  • Page 67 67
  • Page 68 68
  • Page 69 69
  • Page 70 70
  • Page 71 71
  • Page 72 72
  • Page 73 73
  • Page 74 74
  • Page 75 75
  • Page 76 76
  • Page 77 77
  • Page 78 78
  • Page 79 79
  • Page 80 80
  • Page 81 81
  • Page 82 82
  • Page 83 83
  • Page 84 84
  • Page 85 85
  • Page 86 86
  • Page 87 87
  • Page 88 88
  • Page 89 89
  • Page 90 90
  • Page 91 91
  • Page 92 92
  • Page 93 93
  • Page 94 94
  • Page 95 95
  • Page 96 96
  • Page 97 97
  • Page 98 98
  • Page 99 99
  • Page 100 100
  • Page 101 101
  • Page 102 102
  • Page 103 103
  • Page 104 104
  • Page 105 105
  • Page 106 106
  • Page 107 107
  • Page 108 108
  • Page 109 109
  • Page 110 110
  • Page 111 111
  • Page 112 112
  • Page 113 113
  • Page 114 114
  • Page 115 115
  • Page 116 116
  • Page 117 117
  • Page 118 118
  • Page 119 119
  • Page 120 120
  • Page 121 121
  • Page 122 122
  • Page 123 123
  • Page 124 124
  • Page 125 125
  • Page 126 126
  • Page 127 127
  • Page 128 128
  • Page 129 129
  • Page 130 130
  • Page 131 131
  • Page 132 132
  • Page 133 133
  • Page 134 134
  • Page 135 135
  • Page 136 136
  • Page 137 137
  • Page 138 138
  • Page 139 139
  • Page 140 140
  • Page 141 141
  • Page 142 142
  • Page 143 143
  • Page 144 144
  • Page 145 145
  • Page 146 146
  • Page 147 147
  • Page 148 148
  • Page 149 149
  • Page 150 150
  • Page 151 151
  • Page 152 152
  • Page 153 153
  • Page 154 154
  • Page 155 155
  • Page 156 156
  • Page 157 157
  • Page 158 158
  • Page 159 159
  • Page 160 160
  • Page 161 161
  • Page 162 162
  • Page 163 163
  • Page 164 164
  • Page 165 165
  • Page 166 166
  • Page 167 167
  • Page 168 168
  • Page 169 169
  • Page 170 170
  • Page 171 171
  • Page 172 172
  • Page 173 173
  • Page 174 174
  • Page 175 175
  • Page 176 176
  • Page 177 177
  • Page 178 178
  • Page 179 179
  • Page 180 180
  • Page 181 181
  • Page 182 182
  • Page 183 183
  • Page 184 184
  • Page 185 185
  • Page 186 186
  • Page 187 187
  • Page 188 188
  • Page 189 189
  • Page 190 190
  • Page 191 191
  • Page 192 192
  • Page 193 193
  • Page 194 194
  • Page 195 195
  • Page 196 196
  • Page 197 197
  • Page 198 198
  • Page 199 199
  • Page 200 200
  • Page 201 201
  • Page 202 202
  • Page 203 203
  • Page 204 204
  • Page 205 205
  • Page 206 206
  • Page 207 207
  • Page 208 208
  • Page 209 209
  • Page 210 210
  • Page 211 211
  • Page 212 212
  • Page 213 213
  • Page 214 214
  • Page 215 215
  • Page 216 216
  • Page 217 217
  • Page 218 218
  • Page 219 219
  • Page 220 220
  • Page 221 221
  • Page 222 222
  • Page 223 223
  • Page 224 224
  • Page 225 225
  • Page 226 226
  • Page 227 227
  • Page 228 228
  • Page 229 229
  • Page 230 230
  • Page 231 231
  • Page 232 232
  • Page 233 233
  • Page 234 234
  • Page 235 235
  • Page 236 236
  • Page 237 237
  • Page 238 238
  • Page 239 239
  • Page 240 240
  • Page 241 241
  • Page 242 242
  • Page 243 243
  • Page 244 244
  • Page 245 245
  • Page 246 246
  • Page 247 247
  • Page 248 248
  • Page 249 249
  • Page 250 250
  • Page 251 251
  • Page 252 252
  • Page 253 253
  • Page 254 254
  • Page 255 255
  • Page 256 256
  • Page 257 257
  • Page 258 258
  • Page 259 259
  • Page 260 260
  • Page 261 261
  • Page 262 262
  • Page 263 263
  • Page 264 264
  • Page 265 265
  • Page 266 266
  • Page 267 267
  • Page 268 268
  • Page 269 269
  • Page 270 270
  • Page 271 271
  • Page 272 272
  • Page 273 273
  • Page 274 274
  • Page 275 275
  • Page 276 276
  • Page 277 277
  • Page 278 278
  • Page 279 279
  • Page 280 280
  • Page 281 281
  • Page 282 282
  • Page 283 283
  • Page 284 284
  • Page 285 285
  • Page 286 286
  • Page 287 287
  • Page 288 288
  • Page 289 289
  • Page 290 290
  • Page 291 291
  • Page 292 292
  • Page 293 293
  • Page 294 294
  • Page 295 295
  • Page 296 296
  • Page 297 297
  • Page 298 298
  • Page 299 299
  • Page 300 300
  • Page 301 301
  • Page 302 302
  • Page 303 303
  • Page 304 304
  • Page 305 305
  • Page 306 306
  • Page 307 307
  • Page 308 308
  • Page 309 309
  • Page 310 310
  • Page 311 311
  • Page 312 312
  • Page 313 313
  • Page 314 314
  • Page 315 315
  • Page 316 316
  • Page 317 317
  • Page 318 318
  • Page 319 319
  • Page 320 320
  • Page 321 321
  • Page 322 322
  • Page 323 323
  • Page 324 324
  • Page 325 325
  • Page 326 326
  • Page 327 327
  • Page 328 328
  • Page 329 329
  • Page 330 330
  • Page 331 331
  • Page 332 332
  • Page 333 333
  • Page 334 334
  • Page 335 335
  • Page 336 336
  • Page 337 337
  • Page 338 338
  • Page 339 339
  • Page 340 340
  • Page 341 341
  • Page 342 342
  • Page 343 343
  • Page 344 344
  • Page 345 345
  • Page 346 346
  • Page 347 347
  • Page 348 348
  • Page 349 349
  • Page 350 350
  • Page 351 351
  • Page 352 352
  • Page 353 353
  • Page 354 354
  • Page 355 355
  • Page 356 356
  • Page 357 357
  • Page 358 358
  • Page 359 359
  • Page 360 360
  • Page 361 361
  • Page 362 362
  • Page 363 363
  • Page 364 364
  • Page 365 365
  • Page 366 366
  • Page 367 367
  • Page 368 368
  • Page 369 369
  • Page 370 370
  • Page 371 371
  • Page 372 372
  • Page 373 373
  • Page 374 374
  • Page 375 375
  • Page 376 376
  • Page 377 377
  • Page 378 378
  • Page 379 379
  • Page 380 380
  • Page 381 381
  • Page 382 382
  • Page 383 383
  • Page 384 384
  • Page 385 385
  • Page 386 386
  • Page 387 387
  • Page 388 388
  • Page 389 389
  • Page 390 390
  • Page 391 391
  • Page 392 392
  • Page 393 393
  • Page 394 394
  • Page 395 395
  • Page 396 396
  • Page 397 397
  • Page 398 398
  • Page 399 399
  • Page 400 400
  • Page 401 401
  • Page 402 402
  • Page 403 403
  • Page 404 404
  • Page 405 405
  • Page 406 406
  • Page 407 407
  • Page 408 408
  • Page 409 409
  • Page 410 410
  • Page 411 411
  • Page 412 412
  • Page 413 413
  • Page 414 414
  • Page 415 415
  • Page 416 416
  • Page 417 417
  • Page 418 418
  • Page 419 419
  • Page 420 420
  • Page 421 421
  • Page 422 422
  • Page 423 423
  • Page 424 424
  • Page 425 425
  • Page 426 426
  • Page 427 427
  • Page 428 428
  • Page 429 429
  • Page 430 430
  • Page 431 431
  • Page 432 432
  • Page 433 433
  • Page 434 434
  • Page 435 435
  • Page 436 436
  • Page 437 437
  • Page 438 438
  • Page 439 439
  • Page 440 440
  • Page 441 441
  • Page 442 442
  • Page 443 443
  • Page 444 444
  • Page 445 445
  • Page 446 446
  • Page 447 447
  • Page 448 448
  • Page 449 449
  • Page 450 450
  • Page 451 451
  • Page 452 452
  • Page 453 453
  • Page 454 454
  • Page 455 455
  • Page 456 456
  • Page 457 457
  • Page 458 458
  • Page 459 459
  • Page 460 460
  • Page 461 461
  • Page 462 462
  • Page 463 463
  • Page 464 464
  • Page 465 465
  • Page 466 466
  • Page 467 467
  • Page 468 468
  • Page 469 469
  • Page 470 470
  • Page 471 471
  • Page 472 472
  • Page 473 473
  • Page 474 474
  • Page 475 475
  • Page 476 476
  • Page 477 477
  • Page 478 478
  • Page 479 479
  • Page 480 480
  • Page 481 481
  • Page 482 482
  • Page 483 483
  • Page 484 484
  • Page 485 485
  • Page 486 486
  • Page 487 487
  • Page 488 488
  • Page 489 489
  • Page 490 490
  • Page 491 491
  • Page 492 492
  • Page 493 493
  • Page 494 494
  • Page 495 495
  • Page 496 496
  • Page 497 497
  • Page 498 498
  • Page 499 499
  • Page 500 500
  • Page 501 501
  • Page 502 502
  • Page 503 503
  • Page 504 504
  • Page 505 505
  • Page 506 506
  • Page 507 507
  • Page 508 508
  • Page 509 509
  • Page 510 510
  • Page 511 511
  • Page 512 512
  • Page 513 513
  • Page 514 514
  • Page 515 515
  • Page 516 516
  • Page 517 517
  • Page 518 518
  • Page 519 519
  • Page 520 520
  • Page 521 521
  • Page 522 522
  • Page 523 523
  • Page 524 524
  • Page 525 525
  • Page 526 526
  • Page 527 527
  • Page 528 528
  • Page 529 529
  • Page 530 530
  • Page 531 531
  • Page 532 532
  • Page 533 533
  • Page 534 534
  • Page 535 535
  • Page 536 536
  • Page 537 537
  • Page 538 538
  • Page 539 539
  • Page 540 540
  • Page 541 541
  • Page 542 542
  • Page 543 543
  • Page 544 544
  • Page 545 545
  • Page 546 546
  • Page 547 547
  • Page 548 548
  • Page 549 549
  • Page 550 550
  • Page 551 551
  • Page 552 552
  • Page 553 553
  • Page 554 554
  • Page 555 555
  • Page 556 556
  • Page 557 557
  • Page 558 558
  • Page 559 559
  • Page 560 560
  • Page 561 561
  • Page 562 562
  • Page 563 563
  • Page 564 564
  • Page 565 565
  • Page 566 566
  • Page 567 567
  • Page 568 568
  • Page 569 569
  • Page 570 570
  • Page 571 571
  • Page 572 572
  • Page 573 573
  • Page 574 574
  • Page 575 575
  • Page 576 576
  • Page 577 577
  • Page 578 578
  • Page 579 579
  • Page 580 580
  • Page 581 581
  • Page 582 582
  • Page 583 583
  • Page 584 584
  • Page 585 585
  • Page 586 586
  • Page 587 587
  • Page 588 588
  • Page 589 589
  • Page 590 590
  • Page 591 591
  • Page 592 592
  • Page 593 593
  • Page 594 594
  • Page 595 595
  • Page 596 596
  • Page 597 597
  • Page 598 598
  • Page 599 599
  • Page 600 600
  • Page 601 601
  • Page 602 602
  • Page 603 603
  • Page 604 604
  • Page 605 605
  • Page 606 606
  • Page 607 607
  • Page 608 608
  • Page 609 609
  • Page 610 610
  • Page 611 611
  • Page 612 612
  • Page 613 613
  • Page 614 614
  • Page 615 615
  • Page 616 616
  • Page 617 617
  • Page 618 618
  • Page 619 619
  • Page 620 620
  • Page 621 621
  • Page 622 622
  • Page 623 623
  • Page 624 624
  • Page 625 625
  • Page 626 626
  • Page 627 627
  • Page 628 628
  • Page 629 629
  • Page 630 630
  • Page 631 631
  • Page 632 632
  • Page 633 633
  • Page 634 634
  • Page 635 635
  • Page 636 636
  • Page 637 637
  • Page 638 638
  • Page 639 639
  • Page 640 640
  • Page 641 641
  • Page 642 642
  • Page 643 643
  • Page 644 644
  • Page 645 645
  • Page 646 646
  • Page 647 647
  • Page 648 648
  • Page 649 649
  • Page 650 650
  • Page 651 651
  • Page 652 652
  • Page 653 653
  • Page 654 654
  • Page 655 655
  • Page 656 656
  • Page 657 657
  • Page 658 658
  • Page 659 659
  • Page 660 660
  • Page 661 661
  • Page 662 662
  • Page 663 663
  • Page 664 664
  • Page 665 665
  • Page 666 666
  • Page 667 667
  • Page 668 668
  • Page 669 669
  • Page 670 670
  • Page 671 671
  • Page 672 672
  • Page 673 673
  • Page 674 674
  • Page 675 675
  • Page 676 676
  • Page 677 677
  • Page 678 678
  • Page 679 679
  • Page 680 680
  • Page 681 681
  • Page 682 682
  • Page 683 683
  • Page 684 684
  • Page 685 685
  • Page 686 686
  • Page 687 687
  • Page 688 688
  • Page 689 689
  • Page 690 690
  • Page 691 691
  • Page 692 692
  • Page 693 693
  • Page 694 694
  • Page 695 695
  • Page 696 696
  • Page 697 697
  • Page 698 698
  • Page 699 699
  • Page 700 700
  • Page 701 701
  • Page 702 702
  • Page 703 703
  • Page 704 704
  • Page 705 705
  • Page 706 706
  • Page 707 707
  • Page 708 708
  • Page 709 709
  • Page 710 710
  • Page 711 711
  • Page 712 712
  • Page 713 713
  • Page 714 714
  • Page 715 715
  • Page 716 716
  • Page 717 717
  • Page 718 718
  • Page 719 719
  • Page 720 720
  • Page 721 721
  • Page 722 722
  • Page 723 723
  • Page 724 724
  • Page 725 725
  • Page 726 726
  • Page 727 727
  • Page 728 728
  • Page 729 729
  • Page 730 730
  • Page 731 731
  • Page 732 732
  • Page 733 733
  • Page 734 734
  • Page 735 735
  • Page 736 736
  • Page 737 737
  • Page 738 738
  • Page 739 739
  • Page 740 740
  • Page 741 741
  • Page 742 742
  • Page 743 743
  • Page 744 744
  • Page 745 745
  • Page 746 746
  • Page 747 747
  • Page 748 748
  • Page 749 749
  • Page 750 750
  • Page 751 751
  • Page 752 752
  • Page 753 753
  • Page 754 754
  • Page 755 755
  • Page 756 756
  • Page 757 757
  • Page 758 758
  • Page 759 759
  • Page 760 760
  • Page 761 761
  • Page 762 762
  • Page 763 763
  • Page 764 764
  • Page 765 765
  • Page 766 766
  • Page 767 767
  • Page 768 768
  • Page 769 769
  • Page 770 770
  • Page 771 771
  • Page 772 772
  • Page 773 773
  • Page 774 774
  • Page 775 775
  • Page 776 776
  • Page 777 777
  • Page 778 778
  • Page 779 779
  • Page 780 780
  • Page 781 781
  • Page 782 782
  • Page 783 783
  • Page 784 784
  • Page 785 785
  • Page 786 786
  • Page 787 787
  • Page 788 788
  • Page 789 789
  • Page 790 790
  • Page 791 791
  • Page 792 792
  • Page 793 793
  • Page 794 794
  • Page 795 795
  • Page 796 796
  • Page 797 797
  • Page 798 798
  • Page 799 799
  • Page 800 800
  • Page 801 801
  • Page 802 802
  • Page 803 803
  • Page 804 804
  • Page 805 805
  • Page 806 806
  • Page 807 807
  • Page 808 808
  • Page 809 809
  • Page 810 810
  • Page 811 811
  • Page 812 812
  • Page 813 813
  • Page 814 814
  • Page 815 815
  • Page 816 816
  • Page 817 817
  • Page 818 818
  • Page 819 819
  • Page 820 820
  • Page 821 821
  • Page 822 822
  • Page 823 823
  • Page 824 824
  • Page 825 825
  • Page 826 826
  • Page 827 827
  • Page 828 828
  • Page 829 829
  • Page 830 830
  • Page 831 831
  • Page 832 832
  • Page 833 833
  • Page 834 834
  • Page 835 835
  • Page 836 836
  • Page 837 837
  • Page 838 838
  • Page 839 839
  • Page 840 840
  • Page 841 841
  • Page 842 842
  • Page 843 843
  • Page 844 844
  • Page 845 845
  • Page 846 846
  • Page 847 847
  • Page 848 848
  • Page 849 849
  • Page 850 850
  • Page 851 851
  • Page 852 852
  • Page 853 853
  • Page 854 854
  • Page 855 855
  • Page 856 856
  • Page 857 857
  • Page 858 858
  • Page 859 859
  • Page 860 860
  • Page 861 861
  • Page 862 862
  • Page 863 863
  • Page 864 864
  • Page 865 865
  • Page 866 866
  • Page 867 867
  • Page 868 868
  • Page 869 869
  • Page 870 870
  • Page 871 871
  • Page 872 872
  • Page 873 873
  • Page 874 874
  • Page 875 875
  • Page 876 876
  • Page 877 877
  • Page 878 878
  • Page 879 879
  • Page 880 880
  • Page 881 881
  • Page 882 882
  • Page 883 883
  • Page 884 884
  • Page 885 885
  • Page 886 886
  • Page 887 887
  • Page 888 888
  • Page 889 889
  • Page 890 890
  • Page 891 891
  • Page 892 892
  • Page 893 893
  • Page 894 894
  • Page 895 895
  • Page 896 896
  • Page 897 897
  • Page 898 898
  • Page 899 899
  • Page 900 900
  • Page 901 901
  • Page 902 902
  • Page 903 903
  • Page 904 904
  • Page 905 905
  • Page 906 906
  • Page 907 907
  • Page 908 908
  • Page 909 909
  • Page 910 910
  • Page 911 911
  • Page 912 912
  • Page 913 913
  • Page 914 914
  • Page 915 915
  • Page 916 916
  • Page 917 917
  • Page 918 918
  • Page 919 919
  • Page 920 920
  • Page 921 921
  • Page 922 922
  • Page 923 923
  • Page 924 924
  • Page 925 925
  • Page 926 926
  • Page 927 927
  • Page 928 928
  • Page 929 929
  • Page 930 930
  • Page 931 931
  • Page 932 932
  • Page 933 933
  • Page 934 934
  • Page 935 935
  • Page 936 936
  • Page 937 937
  • Page 938 938
  • Page 939 939
  • Page 940 940
  • Page 941 941
  • Page 942 942
  • Page 943 943
  • Page 944 944
  • Page 945 945
  • Page 946 946
  • Page 947 947
  • Page 948 948
  • Page 949 949
  • Page 950 950
  • Page 951 951
  • Page 952 952
  • Page 953 953
  • Page 954 954
  • Page 955 955
  • Page 956 956
  • Page 957 957
  • Page 958 958
  • Page 959 959
  • Page 960 960
  • Page 961 961
  • Page 962 962
  • Page 963 963
  • Page 964 964
  • Page 965 965
  • Page 966 966
  • Page 967 967
  • Page 968 968
  • Page 969 969
  • Page 970 970
  • Page 971 971
  • Page 972 972
  • Page 973 973
  • Page 974 974
  • Page 975 975
  • Page 976 976
  • Page 977 977
  • Page 978 978
  • Page 979 979
  • Page 980 980
  • Page 981 981
  • Page 982 982
  • Page 983 983
  • Page 984 984
  • Page 985 985
  • Page 986 986
  • Page 987 987
  • Page 988 988
  • Page 989 989
  • Page 990 990
  • Page 991 991
  • Page 992 992
  • Page 993 993
  • Page 994 994
  • Page 995 995
  • Page 996 996
  • Page 997 997
  • Page 998 998
  • Page 999 999
  • Page 1000 1000
  • Page 1001 1001
  • Page 1002 1002
  • Page 1003 1003
  • Page 1004 1004
  • Page 1005 1005
  • Page 1006 1006
  • Page 1007 1007
  • Page 1008 1008
  • Page 1009 1009
  • Page 1010 1010
  • Page 1011 1011
  • Page 1012 1012
  • Page 1013 1013
  • Page 1014 1014
  • Page 1015 1015
  • Page 1016 1016
  • Page 1017 1017
  • Page 1018 1018
  • Page 1019 1019
  • Page 1020 1020
  • Page 1021 1021
  • Page 1022 1022
  • Page 1023 1023
  • Page 1024 1024
  • Page 1025 1025
  • Page 1026 1026
  • Page 1027 1027
  • Page 1028 1028
  • Page 1029 1029
  • Page 1030 1030
  • Page 1031 1031
  • Page 1032 1032
  • Page 1033 1033
  • Page 1034 1034
  • Page 1035 1035
  • Page 1036 1036
  • Page 1037 1037
  • Page 1038 1038
  • Page 1039 1039
  • Page 1040 1040
  • Page 1041 1041
  • Page 1042 1042
  • Page 1043 1043
  • Page 1044 1044
  • Page 1045 1045
  • Page 1046 1046
  • Page 1047 1047
  • Page 1048 1048
  • Page 1049 1049
  • Page 1050 1050
  • Page 1051 1051
  • Page 1052 1052
  • Page 1053 1053
  • Page 1054 1054
  • Page 1055 1055
  • Page 1056 1056
  • Page 1057 1057
  • Page 1058 1058
  • Page 1059 1059
  • Page 1060 1060
  • Page 1061 1061
  • Page 1062 1062
  • Page 1063 1063
  • Page 1064 1064
  • Page 1065 1065
  • Page 1066 1066
  • Page 1067 1067
  • Page 1068 1068
  • Page 1069 1069
  • Page 1070 1070
  • Page 1071 1071
  • Page 1072 1072
  • Page 1073 1073
  • Page 1074 1074
  • Page 1075 1075
  • Page 1076 1076
  • Page 1077 1077
  • Page 1078 1078
  • Page 1079 1079
  • Page 1080 1080
  • Page 1081 1081
  • Page 1082 1082
  • Page 1083 1083
  • Page 1084 1084
  • Page 1085 1085
  • Page 1086 1086
  • Page 1087 1087
  • Page 1088 1088
  • Page 1089 1089
  • Page 1090 1090
  • Page 1091 1091
  • Page 1092 1092
  • Page 1093 1093
  • Page 1094 1094
  • Page 1095 1095
  • Page 1096 1096
  • Page 1097 1097
  • Page 1098 1098
  • Page 1099 1099
  • Page 1100 1100
  • Page 1101 1101
  • Page 1102 1102
  • Page 1103 1103
  • Page 1104 1104
  • Page 1105 1105
  • Page 1106 1106
  • Page 1107 1107
  • Page 1108 1108
  • Page 1109 1109
  • Page 1110 1110
  • Page 1111 1111
  • Page 1112 1112
  • Page 1113 1113
  • Page 1114 1114
  • Page 1115 1115
  • Page 1116 1116
  • Page 1117 1117
  • Page 1118 1118
  • Page 1119 1119
  • Page 1120 1120
  • Page 1121 1121
  • Page 1122 1122
  • Page 1123 1123
  • Page 1124 1124
  • Page 1125 1125
  • Page 1126 1126
  • Page 1127 1127
  • Page 1128 1128
  • Page 1129 1129
  • Page 1130 1130
  • Page 1131 1131
  • Page 1132 1132
  • Page 1133 1133
  • Page 1134 1134
  • Page 1135 1135
  • Page 1136 1136
  • Page 1137 1137
  • Page 1138 1138
  • Page 1139 1139
  • Page 1140 1140
  • Page 1141 1141
  • Page 1142 1142
  • Page 1143 1143
  • Page 1144 1144
  • Page 1145 1145
  • Page 1146 1146
  • Page 1147 1147
  • Page 1148 1148
  • Page 1149 1149
  • Page 1150 1150
  • Page 1151 1151
  • Page 1152 1152
  • Page 1153 1153
  • Page 1154 1154
  • Page 1155 1155
  • Page 1156 1156
  • Page 1157 1157
  • Page 1158 1158
  • Page 1159 1159
  • Page 1160 1160
  • Page 1161 1161
  • Page 1162 1162
  • Page 1163 1163
  • Page 1164 1164
  • Page 1165 1165
  • Page 1166 1166
  • Page 1167 1167
  • Page 1168 1168
  • Page 1169 1169
  • Page 1170 1170
  • Page 1171 1171
  • Page 1172 1172
  • Page 1173 1173
  • Page 1174 1174
  • Page 1175 1175
  • Page 1176 1176
  • Page 1177 1177
  • Page 1178 1178
  • Page 1179 1179
  • Page 1180 1180
  • Page 1181 1181
  • Page 1182 1182
  • Page 1183 1183
  • Page 1184 1184
  • Page 1185 1185
  • Page 1186 1186
  • Page 1187 1187
  • Page 1188 1188
  • Page 1189 1189
  • Page 1190 1190
  • Page 1191 1191
  • Page 1192 1192
  • Page 1193 1193
  • Page 1194 1194
  • Page 1195 1195
  • Page 1196 1196
  • Page 1197 1197
  • Page 1198 1198
  • Page 1199 1199
  • Page 1200 1200
  • Page 1201 1201
  • Page 1202 1202
  • Page 1203 1203
  • Page 1204 1204
  • Page 1205 1205
  • Page 1206 1206
  • Page 1207 1207
  • Page 1208 1208
  • Page 1209 1209
  • Page 1210 1210
  • Page 1211 1211
  • Page 1212 1212
  • Page 1213 1213
  • Page 1214 1214
  • Page 1215 1215
  • Page 1216 1216
  • Page 1217 1217
  • Page 1218 1218
  • Page 1219 1219
  • Page 1220 1220
  • Page 1221 1221
  • Page 1222 1222
  • Page 1223 1223
  • Page 1224 1224
  • Page 1225 1225
  • Page 1226 1226
  • Page 1227 1227
  • Page 1228 1228
  • Page 1229 1229
  • Page 1230 1230
  • Page 1231 1231
  • Page 1232 1232
  • Page 1233 1233
  • Page 1234 1234
  • Page 1235 1235
  • Page 1236 1236
  • Page 1237 1237
  • Page 1238 1238
  • Page 1239 1239
  • Page 1240 1240
  • Page 1241 1241
  • Page 1242 1242
  • Page 1243 1243
  • Page 1244 1244
  • Page 1245 1245
  • Page 1246 1246
  • Page 1247 1247
  • Page 1248 1248
  • Page 1249 1249
  • Page 1250 1250
  • Page 1251 1251
  • Page 1252 1252
  • Page 1253 1253
  • Page 1254 1254
  • Page 1255 1255
  • Page 1256 1256
  • Page 1257 1257
  • Page 1258 1258
  • Page 1259 1259
  • Page 1260 1260
  • Page 1261 1261
  • Page 1262 1262
  • Page 1263 1263
  • Page 1264 1264
  • Page 1265 1265
  • Page 1266 1266
  • Page 1267 1267
  • Page 1268 1268
  • Page 1269 1269
  • Page 1270 1270
  • Page 1271 1271
  • Page 1272 1272
  • Page 1273 1273
  • Page 1274 1274
  • Page 1275 1275
  • Page 1276 1276
  • Page 1277 1277
  • Page 1278 1278
  • Page 1279 1279
  • Page 1280 1280
  • Page 1281 1281
  • Page 1282 1282
  • Page 1283 1283
  • Page 1284 1284
  • Page 1285 1285
  • Page 1286 1286
  • Page 1287 1287
  • Page 1288 1288
  • Page 1289 1289
  • Page 1290 1290
  • Page 1291 1291
  • Page 1292 1292
  • Page 1293 1293
  • Page 1294 1294
  • Page 1295 1295
  • Page 1296 1296
  • Page 1297 1297
  • Page 1298 1298
  • Page 1299 1299
  • Page 1300 1300
  • Page 1301 1301
  • Page 1302 1302
  • Page 1303 1303
  • Page 1304 1304
  • Page 1305 1305
  • Page 1306 1306
  • Page 1307 1307
  • Page 1308 1308
  • Page 1309 1309
  • Page 1310 1310
  • Page 1311 1311
  • Page 1312 1312
  • Page 1313 1313
  • Page 1314 1314
  • Page 1315 1315
  • Page 1316 1316
  • Page 1317 1317
  • Page 1318 1318
  • Page 1319 1319
  • Page 1320 1320
  • Page 1321 1321
  • Page 1322 1322
  • Page 1323 1323
  • Page 1324 1324
  • Page 1325 1325
  • Page 1326 1326
  • Page 1327 1327
  • Page 1328 1328
  • Page 1329 1329
  • Page 1330 1330
  • Page 1331 1331
  • Page 1332 1332
  • Page 1333 1333
  • Page 1334 1334
  • Page 1335 1335
  • Page 1336 1336
  • Page 1337 1337
  • Page 1338 1338
  • Page 1339 1339
  • Page 1340 1340
  • Page 1341 1341
  • Page 1342 1342
  • Page 1343 1343
  • Page 1344 1344
  • Page 1345 1345
  • Page 1346 1346
  • Page 1347 1347
  • Page 1348 1348
  • Page 1349 1349
  • Page 1350 1350
  • Page 1351 1351
  • Page 1352 1352
  • Page 1353 1353
  • Page 1354 1354
  • Page 1355 1355
  • Page 1356 1356
  • Page 1357 1357
  • Page 1358 1358
  • Page 1359 1359
  • Page 1360 1360
  • Page 1361 1361
  • Page 1362 1362
  • Page 1363 1363
  • Page 1364 1364
  • Page 1365 1365
  • Page 1366 1366
  • Page 1367 1367
  • Page 1368 1368
  • Page 1369 1369
  • Page 1370 1370
  • Page 1371 1371
  • Page 1372 1372
  • Page 1373 1373
  • Page 1374 1374
  • Page 1375 1375
  • Page 1376 1376
  • Page 1377 1377
  • Page 1378 1378
  • Page 1379 1379
  • Page 1380 1380
  • Page 1381 1381
  • Page 1382 1382
  • Page 1383 1383
  • Page 1384 1384
  • Page 1385 1385
  • Page 1386 1386
  • Page 1387 1387
  • Page 1388 1388
  • Page 1389 1389
  • Page 1390 1390
  • Page 1391 1391
  • Page 1392 1392
  • Page 1393 1393
  • Page 1394 1394
  • Page 1395 1395
  • Page 1396 1396
  • Page 1397 1397
  • Page 1398 1398
  • Page 1399 1399
  • Page 1400 1400
  • Page 1401 1401
  • Page 1402 1402
  • Page 1403 1403
  • Page 1404 1404
  • Page 1405 1405
  • Page 1406 1406
  • Page 1407 1407
  • Page 1408 1408
  • Page 1409 1409
  • Page 1410 1410
  • Page 1411 1411
  • Page 1412 1412
  • Page 1413 1413
  • Page 1414 1414
  • Page 1415 1415
  • Page 1416 1416
  • Page 1417 1417
  • Page 1418 1418
  • Page 1419 1419
  • Page 1420 1420
  • Page 1421 1421
  • Page 1422 1422
  • Page 1423 1423
  • Page 1424 1424
  • Page 1425 1425
  • Page 1426 1426
  • Page 1427 1427
  • Page 1428 1428
  • Page 1429 1429
  • Page 1430 1430
  • Page 1431 1431
  • Page 1432 1432
  • Page 1433 1433
  • Page 1434 1434
  • Page 1435 1435
  • Page 1436 1436
  • Page 1437 1437
  • Page 1438 1438
  • Page 1439 1439
  • Page 1440 1440
  • Page 1441 1441
  • Page 1442 1442
  • Page 1443 1443
  • Page 1444 1444
  • Page 1445 1445
  • Page 1446 1446
  • Page 1447 1447
  • Page 1448 1448
  • Page 1449 1449
  • Page 1450 1450
  • Page 1451 1451
  • Page 1452 1452
  • Page 1453 1453
  • Page 1454 1454
  • Page 1455 1455
  • Page 1456 1456
  • Page 1457 1457
  • Page 1458 1458
  • Page 1459 1459
  • Page 1460 1460
  • Page 1461 1461
  • Page 1462 1462
  • Page 1463 1463
  • Page 1464 1464
  • Page 1465 1465
  • Page 1466 1466
  • Page 1467 1467
  • Page 1468 1468
  • Page 1469 1469
  • Page 1470 1470
  • Page 1471 1471
  • Page 1472 1472
  • Page 1473 1473
  • Page 1474 1474
  • Page 1475 1475
  • Page 1476 1476
  • Page 1477 1477
  • Page 1478 1478
  • Page 1479 1479
  • Page 1480 1480
  • Page 1481 1481
  • Page 1482 1482
  • Page 1483 1483
  • Page 1484 1484
  • Page 1485 1485
  • Page 1486 1486
  • Page 1487 1487
  • Page 1488 1488
  • Page 1489 1489
  • Page 1490 1490
  • Page 1491 1491
  • Page 1492 1492
  • Page 1493 1493
  • Page 1494 1494
  • Page 1495 1495
  • Page 1496 1496
  • Page 1497 1497
  • Page 1498 1498
  • Page 1499 1499
  • Page 1500 1500
  • Page 1501 1501
  • Page 1502 1502
  • Page 1503 1503
  • Page 1504 1504
  • Page 1505 1505
  • Page 1506 1506
  • Page 1507 1507
  • Page 1508 1508
  • Page 1509 1509
  • Page 1510 1510
  • Page 1511 1511
  • Page 1512 1512
  • Page 1513 1513
  • Page 1514 1514
  • Page 1515 1515
  • Page 1516 1516
  • Page 1517 1517
  • Page 1518 1518
  • Page 1519 1519
  • Page 1520 1520
  • Page 1521 1521
  • Page 1522 1522
  • Page 1523 1523
  • Page 1524 1524
  • Page 1525 1525
  • Page 1526 1526
  • Page 1527 1527
  • Page 1528 1528
  • Page 1529 1529
  • Page 1530 1530
  • Page 1531 1531
  • Page 1532 1532
  • Page 1533 1533
  • Page 1534 1534
  • Page 1535 1535
  • Page 1536 1536
  • Page 1537 1537
  • Page 1538 1538
  • Page 1539 1539
  • Page 1540 1540
  • Page 1541 1541
  • Page 1542 1542
  • Page 1543 1543
  • Page 1544 1544
  • Page 1545 1545
  • Page 1546 1546
  • Page 1547 1547
  • Page 1548 1548
  • Page 1549 1549
  • Page 1550 1550

NXP i.MX RT600 User guide

Type
User guide

Ask a question and I''ll find the answer in the document

Finding information in a document is now easier with AI