Quectel EG9 Series Reference Design

Type
Reference Design

Quectel EG9 Series is an industrial-grade LTE Cat 4 module that supports a maximum data rate of 150Mbps downlink and 50Mbps uplink. It has a compact and unified form factor, making it suitable for a wide range of IoT applications. The module also supports multiple GNSS constellations, including GPS, GLONASS, BeiDou, Galileo, and QZSS, ensuring accurate positioning. Additionally, the Quectel EG9 Series features rich interfaces, including UART, USB, GPIO, and ADC, allowing for flexible connectivity with various external devices.

Quectel EG9 Series is an industrial-grade LTE Cat 4 module that supports a maximum data rate of 150Mbps downlink and 50Mbps uplink. It has a compact and unified form factor, making it suitable for a wide range of IoT applications. The module also supports multiple GNSS constellations, including GPS, GLONASS, BeiDou, Galileo, and QZSS, ensuring accurate positioning. Additionally, the Quectel EG9 Series features rich interfaces, including UART, USB, GPIO, and ADC, allowing for flexible connectivity with various external devices.

EG9x
Reference Design
LTE Module Series
Rev. EG9x_Reference_Design_Rev.A
Date: 2018-02-09
Status: Released
www.quectel.com
LTE Module Series
EG9x Reference Design
EC20_R2.1_Reference_Design 1 / 4
Our aim is to provide customers with timely and comprehensive service. For any
assistance, please contact our company headquarters:
Quectel Wireless Solutions Co., Ltd.
7
th
Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China
Tel: +86 21 5108 6236
Or our local office. For more information, please visit:
http://quectel.com/support/sales.htm
For technical support, or to report documentation errors, please visit:
http://quectel.com/support/technical.htm
Or Email to: support@quectel.com
GENERAL NOTES
QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION
PROVIDED IS BASED UPON CUSTOMERS’ REQUIREMENTS. QUECTEL MAKES EVERY EFFORT
TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT
MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT
ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR
RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO
CHANGE WITHOUT PRIOR NOTICE.
COPYRIGHT
THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF
QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION
AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE
FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF
DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR
REGISTRATION OF A UTILITY MODEL OR DESIGN.
Copyright © Quectel Wireless Solutions Co., Ltd. 2018. All rights reserved.
LTE Module Series
EG9x Reference Design
EC20_R2.1_Reference_Design 2 / 4
About the Document
History
Revision
Date
Author
Description
A
2018-02-09
Felix YIN
Initial
LTE Module Series
EG9x Reference Design
EC20_R2.1_Reference_Design 3 / 4
Contents
About the Document ................................................................................................................................... 2
Contents ....................................................................................................................................................... 3
1 Reference Design ................................................................................................................................. 4
1.1. Introduction ................................................................................................................................ 4
1.2. Schematics ................................................................................................................................ 4
LTE Module Series
EG9x Reference Design
EG9x_Reference_Design 4 / 4
1 Reference Design
1.1. Introduction
This document provides the reference design for Quectel EG9x modules, which contain EG91 and EG95
modules.
1.2. Schematics
The schematics illustrated in the following pages are provided for your reference only.
Quectel Wireless Solutions
Yeoman CHEN
CHECKED BY
Felix YIN
DRAWN BY
EG9x
2018-02-09
TITLEPROJECT
A
OF
A
6
5
4
32
1
SHEET
A
B
C
D
123456
D
C
B
SIZE
VER
101 DATE
A2
1. Keep all RESERVED and unused pins unconnected.
Notes:
Reference Design
2. It is recommended to reserve the test points for upgrading the firmware over USB interface and minimizing stub length of USB test signals.
Module Interface
Close to module
3. EG9x module provides a digital clock output (CLK_OUT) for an external audio codec, please refer to EG91 and EG95 Hardware Designs for further details.
Notes2
Model
EG9x-E
Installed
Not installed
4. SMD difference between EG9x-E and EG9x-NA is shown as below:
R0105, R0107
R0106
EG9x-NA
R0105, R0107
R0106
EG9x module
EG9x module
C0101
100nF
1
RESERVED
2
RESERVED
3
GND
4
PCM_CLK
5
PCM_SYNC
6
PCM_DIN
7
PCM_DOUT
8
USB_VBUS
9
USB_DP
10
USB_DM
11
RESERVED
12
RESERVED
13
RESERVED
14
RESERVED
15
PWRKEY
16
RESERVED
17
RESET_N
18
RESERVED
19
AP_READY
20
STATUS
21
NETLIGHT
22
DBG_RXD
23
DBG_TXD
24
RESERVED
25
CLK_OUT
26
SPI_CLK
27
SPI_MOSI
28
SPI_MISO
29
VDD_EXT
30
DTR
31
GND
32
VBAT_BB
33
VBAT_BB
34
RXD
35
TXD
36
CTS
37
RTS
38
DCD
39
RI
40
I2C_SCL
41
I2C_SDA
42
USIM1_PRESENCE
43
USIM1_VDD
44
USIM1_RST
45
USIM1_DATA
46
USIM1_CLK
47
USIM_GND
48
GND
49
ANT_DIV
50
GND
51
RESERVED
52
VBAT_RF
53
VBAT_RF
54
GND
55
GND
56
RESERVED
57
RESERVED
58
GND
59
GND
60
ANT_MAIN
61
GND
62
GND
U0101-A
63
RESERVED
64
RESERVED
65
RESERVED
66
RESERVED
67
GND
68
GND
69
GND
70
GND
71
GND
72
GND
73
GND
74
GND
75
USB_BOOT
76
RESERVED
77
RESERVED
78
RESERVED
79
GND
80
GND
81
GND
82
GND
83
USIM2_PRESENCE
84
USIM2_CLK
85
USIM2_RST
86
USIM2_DATA
87
USIM2_VDD
88
RESERVED
89
GND
90
GND
91
GND
92
RESERVED
93
RESERVED
94
RESERVED
95
RESERVED
96
RESERVED
97
RESERVED
98
RESERVED
99
RESERVED
100
GND
101
GND
102
GND
103
GND
104
GND
106
GND
105
GND
U0101-B
R0101
0R
R0103
NM_0R
R0102
0R
R0104
NM_0R
R0105
NM_0R
R0106
0R
R0107
NM_0R
[2,10]
USB_VBUS
[2,10]
PWRKEY
[2]
RESET_N
[1,3,10]
VBAT
[9]ANT_MAIN
[8]
USIM1_CLK
[8]
USIM1_DATA
[8]
USIM1_RST
[8]
USIM1_PRESENCE
[8]
USIM_GND
USIM1_VDD
VDD_EXT
[4]RI_MODULE
[4]DCD_MODULE
[4]
RTS_MODULE
[4]CTS_MODULE
[4]TXD_MODULE
[4]
RXD_MODULE
[4]
DTR_MODULE
[10]
STATUS
[10]
NETLIGHT
[5,6]
PCM_CLK
[5,6]
PCM_SYNC
[5,6]
PCM_IN
[5,6]
PCM_OUT
[5,6]
I2C_SDA
[5,6]
I2C_SCL
[2] AP_READY
CLK_OUT
[1,3,10]
VBAT
[10]
DBG_RXD
[10]
DBG_TXD
[10]
SPI_CLK
[10]
SPI_MOSI
[10]
SPI_MISO
[2]
USB_DP
[2]
USB_DM
[10]
USB_DP_TEST
[10]
USB_DM_TEST
[8]
USIM2_RST
[8]
USIM2_CLK
[8]
USIM2_PRESENCE
[8]
USIM2_DATA
USIM2_VDD
[10]
USB_BOOT
[1,9]
ANT_DIV
[9]
ANT_GPS
[1,9]ANT_DIV
Yeoman CHEN
CHECKED BY
DRAWN BY
Felix YIN
Quectel Wireless Solutions
A
EG9x
TITLE
PROJECT
OF
A
6
5
4
32
1
SHEET
A
B
C
D
123456
D
C
B
SIZE
VER
102 DATE
2018-02-09
A2
Notes:
1. U0201 represents customer's MCU.
2. EG9x can only work as a USB device and supports FS/HS modes. To communicate with USB interface, MCU needs to support USB host or OTG function.
VBUS_CONTROL is active high.
It is used to reset the module.It is used to turn on or off the module.
MCU Interface
The VBUS pins of MCU and EG9x should be provided by 5V power system for USB detection, and VBUS_CONTROL is used to turn on and off VBUS power supply.
3. AP_READY is used to detect the MCU's sleep state. For more details about AP_READY, please refer to EG91 and EG95 Hardware Designs
AP_READY High Level Detection
AP_READY Low Level Detection
4. Transistor circuits (Q0203
Q0206) are used for level translation.
The Necessary Control Circuit
Reference Design
5V power source from main board.
and AT Command manuals.
1
VDD
2
GND
3
TXD
4
RXD
5
DTR
6
RI
7
CTS
8
RTS
9
DCD
12
USB_DM
13
USB_ID
14
GPIO_01
15
GPIO_02
16
GPIO_03
17
GPIO_04
10
USB_VBUS
11
USB_DP
18
GPIO_05
19
GPIO_06
20
GPIO_07
U0201
Q0206
DTC043ZEBTL
R0203
47K
R0201
0R
Q0205
DTC043ZEBTL
Q0204
DTC043ZEBTL
R0205
4.7K
R0204
4.7K
Q0203
2SC4617TLQ
G
S
D
Q0201
SI2333CDS-T1
Q0202
DTC043ZEBTL
R0202
10K
C0201
470nF
R0206
100K
C0202
1nF
VDD_MCU
[4]
RXD_MCU
[4]
TXD_MCU
[4]
DTR_MCU
[4]
RI_MCU
[1]
USB_DP
[1]
USB_DM
[1,2,10]
USB_VBUS
[2]
ON/OFF_MCU
[2]
RESET_MCU
[2]
VBUS_CONTROL
[2]
SLEEP_STATUS
VDD_EXT
[1,2]
AP_READY
[2]
SLEEP_STATUS
[1]
RESET_N
[2]
RESET_MCU
[1,10]
PWRKEY
[2]
ON/OFF_MCU
VDD_EXT
[2]
SLEEP_STATUS
[1,2]
AP_READY
VDD_EXT
[4]
CTS_MCU
[4]
RTS_MCU
[4]
DCD_MCU
[3]
VBAT_EN
DC_5V
[1,2,10]
USB_VBUS
[2]
VBUS_CONTROL
[3]
CODEC_POWER_EN
Quectel Wireless Solutions
Felix YIN
DRAWN BY
Yeoman CHEN
CHECKED BY
PROJECT
TITLE
OF
A
6
5
4
32
1
SHEET
A
B
C
D
123456
D
C
B
SIZE
VER
103
A
DATE
2018-02-09
EG9x
A2
e.g. 5V
LDO Application
It is used when the input voltage is below 7V.
VBAT = (R0302/R0303+1)*1.24 = 3.88V
Close to the module VBAT pins
Notes:
2. VBAT should be routed in star mode to VBAT_BB and VBAT_RF pins.
Power Supply Design
VBAT Design
Connect to VBAT_BB pins
Connect to VBAT_RF pins
Reference Design
1. The power supply must be able to provide sufficient current up to 2A or more.
3. The recommended operating voltage of VBAT is 3.3V
4.3V.
Notes:
DC-DC Application
It is used when the input voltage is above 7V. Use a DC-DC convertor to convert a high
e.g. DC12V IN
DC-DC
DC 5V OUT
LDO
DC 3.8V for module
input voltage to a 5V output, and then the LDOs will generate a 3.8V typical voltage for the
LDO
DC 1.8V for codec
module and 1.8V & 3.3V typical voltages for codec.
LDO
DC 3.3V for codec
1. The load current is recommended to be greater than 10mA.
2. The power supply must be able to provide sufficient current up to 2A or more.
VDD_1V8 = [(R0311+R0312)/R0312]*1.207 = 1.8V
VDD_3.3V = (R0305/R0306+1)*1.207 = 3.3V
Supply Power for PCM Codec
e.g. 5V
e.g. 5V
Notes:
Power-on Sequence: power on VDD_1V8 first, then VDD_3.3V.
Power-off Sequence: power off VDD_3.3V first, then VDD_1V8.
1. CODEC_POWER_EN must be at low level in order to ensure the normal output voltage of VDD_3.3V.
If VDD_3.3V power supply needs to be switched off, please keep CODEC_POWER_EN at high level.
2. The following power-on/off sequences should be complied with to ensure the audio codec works normally.
+
C0303
470uF
1
EN
2
IN
3
GND
4
OUT
5
ADJ
U0301
MIC29302WU
C0304
100nF
C0302
100nF
+
C0301
470uF
R0302
100K
1%
R0303
47K
1%
+
C0305
100uF
D0301
PZ3D4V2H
R0301
51K
C0306
100nF
C0307
33pF
C0308
10pF
C0310
100nF
C0311
33pF
C0312
10pF
+
C0309
100uF
R0304
330R
D0302
TVS
Q0301
DTC043ZEBTL
1
IN
3
EN
5
OUT
4
BP
2
GND
U0302
SGM2019-ADJYN5G/TR
C0320
4.7uF
R0310
39K_1%
R0311
75K_1%
C0318
100nF
C0321
100nF
C0322
33pF
C0319
1uF
C0315
4.7uF
R0305
73.2K
1%
R0306
42.2K
1%
C0316
100nF
C0313
1uF
C0314
100nF
1
IN
3
EN
5
OUT
4
BP
2
GND
U0303
SGM2019-ADJYN5G/TR
C0317
33pF
R0308
100K
R0309
100K
R0307
0R
Q0302
DTC043ZE
[3]
DC_IN
VBAT
[1,3,10]
VBAT
[1,3,10]
VBAT
VBAT
[2]
VBAT_EN
VDD_1V8
VDD_3.3V
[3]
DC_IN
[3]
DC_IN
[1,2,4,8,10]
VDD_EXT
[2]
CODEC_POWER_EN
VDD_1V8
Quectel Wireless Solutions
Yeoman CHEN
CHECKED BY
Felix YIN
DRAWN BY
A
PROJECT
TITLE
OF
A
6
5
4
32
1
SHEET
A
B
C
D
123456
D
C
B
SIZE
VER
104 DATE
2018-02-09
EG9x
A2
Notes:
UART Design
UART Translation - IC Solution
UART Translation - Transistor Solution (Recommended)
1. The power supply voltage of VCCA should not exceed that of VCCB. For more information about TXS0108E, please refer to the datasheet from TI.
2. If a high baud rate is needed, it is highly recommended to install a 1nF capacitor (C0403/C0404) on transistor circiut.
Reference Design
3. The transistor circuit of DTR is similar to that of RTS interface, and the transistor circuit of RI and DCD is similar to that of CTS interface.
C0401
100nF
R0402
120K
R0401
10K
C0402
100nF
Q0401
2SC4617TLQ
Q0402 2SC4617TLQ
R0404
4.7K
R0403
4.7K
C0403
1nF
R0405
4.7K
R0406
4.7K
C0404
1nF
Q0403
2SC4617TLQ
R0408
4.7K
R0407
4.7K
Q0404
2SC4617TLQ
R0409
4.7K
R0410
4.7K
6
A5
7
A6
8
A7
9
A8
10
OE
5
A4
4
A3
19
VCCB
20
B1
18
B2
14
B6
13
B7
12
B8
11
GND
3
A2
2
VCCA
1
A1
17
B3
16
B4
15
B5
U0401
TXS0108E
C0405
1nF
C0406
1nF
VDD_EXT
VDD_EXT
VDD_MCU
[1,4]
TXD_MODULE
[1,4]
RXD_MODULE
[1]
RI_MODULE
[1]
DTR_MODULE
[2,4]
TXD_MCU
[2,4]
RXD_MCU
[2]
DTR_MCU
[2]
RI_MCU
[2,4]
RXD_MCU
[1,4]
RXD_MODULE
VDD_EXT
VDD_EXT
[2,4] TXD_MCU
[1,4]
TXD_MODULE
VDD_EXTVDD_MCU
VDD_EXT
[1,4]
RTS_MODULE
[2,4]
RTS_MCU
VDD_EXT
VDD_MCU
[2,4]
CTS_MCU
[1,4]
CTS_MODULE
VDD_EXT
[2,4]
CTS_MCU
[2,4]
RTS_MCU
[1,4]
CTS_MODULE
[1,4]
RTS_MODULE
[1]
DCD_MODULE
[2]
DCD_MCU
CHECKED BY
Felix YIN
DRAWN BY
Quectel Wireless Solutions
EG9x
A
TITLE
PROJECT
OF
A
6
5
4
32
1
SHEET
A
B
C
D
123456
D
C
B
SIZE
VER
105 DATE
2018-02-09
A2
Reference Design
Winter CHEN
Notes:
3. EG9x module will automatically initialize the codec via I2C interface after it is turned on successfully, so all power supplies for the codec need to be powered on before that.
Audio Codec Design (ALC5616)
1. ALC5616 power-on sequence: DBVDD/I2C pull-up power/AVDD/DACREF/CPVDD -> MICVDD -> software initialization.
2. ALC5616 power-off sequence: close codec function by software -> MICVDD -> DBVDD/I2C pull-up power/AVDD/DACREF/CPVDD.
2
IN1P/DMC_DAT
3
IN2P
4
IN2N/JD2
5
DACREF
6
AVDD
7
AGND
10
LOUTR/N
11
CPN2
12
CPP2
13
CPN1
14
CPP1
15
CPVDD
16
CPVPP
18
CPVREF
19
CPVEE
20
HPO_L
21
ADCDAT1
22
DACDAT1
23
LRCK1
26
SCL
27
SDA
28
GPIO1/IRQ1
29
DBVDD
30
DCVDD
31
MICVDD
32
MICBIAS1
8
VREF2
24
BCLK1
1
JD1
9
LOUTL/P
17
HPO_R
25
MCLK
33
DGND
U0501
ALC5616
C0505
4.7uF
C0504
4.7uF
C0503
100nF
R0501
0R
C0501
4.7uF
C0502
100nF
C0509
2.2uF
C0510
100nF
C0506
4.7uF
C0507
100nF
C0508
2.2uF
C0515
2.2uF
C0516
2.2uF
C0511
4.7uF
R0503
0R
R0508
NM_10K
R0510
4.7K
R0509
4.7K
C0523
4.7uF
C0521
2.2uF
C0522
2.2uF
R0504
0R
R0505
0R
R0506
0R
R0507
0R
C0512
NM
C0513
NM
C0514
NM
C0524
2.2uF
C0525
2.2uF
R0516
1K
R0514
1.5K
R0513
1K
R0515
1.5K
C0526
10uF
R0502
0R
C0517
1uF
C0518 1uF
C0519
1uF
C0520
1uF
R0511
0R
R0512
0R
R0522
0R
R0523
0R
C0549
NM_33pF
C0548
NM_33pF
R0524
0R
R0525
0R
VDD_3.3V
VDD_1V8
VDD_3.3V
[1,6]
I2C_SDA
[1,6]
I2C_SCL
VDD_1V8
VDD_1V8
[1,6]
PCM_OUT
[1,6]
PCM_IN
[1,6]
PCM_CLK
[1,6]
PCM_SYNC
[5]
MIC+
[5]
MIC-
[6,7]
SPK_P
[6,7]
SPK_N
MICBIAS
[6,7]
MIC_P
[6,7]
MIC_N
MICBIAS
[5]
MIC+
[5]
MIC-
VDD_1V8
[6,7]
SPK_R
[6,7]
SPK_L
Reference Design
Quectel Wireless Solutions
EG9x
Felix YIN
Yeoman CHEN
CHECKED BY
DRAWN BY
OF
A
6
5
4
32
1
SHEET
A
B
C
D
123456
D
C
B
PROJECT
SIZE
TITLE
VER
106
A
DATE
2018-02-09
A2
Power on reset
Delay Circuit
2. The RC delay circuit, which is assembled with C0612 and R0612, is used to enure that the power on time difference between AVDD and DVDD is within 5ms.
3. The RESET pin must be driven at low level for at least 10ns after all power supplies for TLV320AIC3104 are at their specified values.
Audio Codec Design (TLV320AIC3104)
4. EG9x module will automatically initialize the codec via I2C interface after it is turned on successfully, so all power supplies for the codec need to be powered on before that.
Notes:
1. TLV320AIC3104 power-on sequence: IOVDD -> AVDD/DRVDD -> DVDD -> software initialization.
1
MCLK
2
BCLK
3
WCLK
4
DIN
5
DOUT
6
DVSS
7
IOVDD
8
SCL
9
SDA
10
MIC1LP/LINE1LP
11
MIC1LM/LINE1LM
12
MIC1RP/LINE1RP
13
MIC1RM/LINE1RM
14
MIC2L/LINE2L/MICDET
15
MICBIAS
16
MIC2R/LINE2R
17
AVSS1
18
DRVDD
19
HPLOUT
20
HPLCOM
21
DRVSS
22
HPRCOM
23
HPROUT
24
DRVDD
25
AVDD
26
AVSS2
27
LEFT_LOP
28
LEFT_LOM
29
RIGHT_LOP
30
RIGHT_LOM
31
RESET
32
DVDD
33
GND
U0601
TLV320AIC3104
C0615
100nF
C0614
100nF
R0615
1.5K
R0616
1.5K
C0613
2.2uF
C0604
100nF
C0610
10uF
C0605
1uF
C0606
100nF
C0607
1uF
C0609
1uF
C0616
100nF
C0617
1uF
R0614
0R
C0618
100nF
C0619
1uF
C0621
1uF
C0622
1uF
R0606
10K
R0604
0R
R0603
0R
R0601
0R
R0602
0R
C0611
100nF
C0603
NM
C0601
NM
C0602
NM
C0608
100nF
R0617
1K
R0613
1K
C0620
10uF
R0608
4.7K
R0609
4.7K
R0611
10K
G
SD
Q0601
Si2333DS-T1-E3
C0612
10nF
R0612
100K
Q0602
DTC043ZEBTL
R0607
NM_0R
C0623
22uF
C0624
22uF
R0605
NM_0R
R0610
0R
[5,7]
MIC_P
[5,7]
MIC_N
MICBIAS_3104
[1,5]
I2C_SCL
[1,5]
I2C_SDA
VDD_3.3V
VDD_1V8
[5,7]
SPK_P
[5,7]
SPK_N
DVDD
[1,5]
PCM_CLK
[1,5]
PCM_SYNC
[5,7]
SPK_R
[5,7]
SPK_L
[3,5,6]
VDD_1V8
[6]
DVDD
[3,5,6]
VDD_3.3V
[6]
DVDD
[3,5,6]
VDD_1V8
[1,5]
PCM_OUT
[1,5]
PCM_IN
Felix YIN
Yeoman CHEN
CHECKED BY
DRAWN BY
OF
A
6
5
4
32
1
SHEET
A
B
C
D
123456
D
C
B
Quectel Wireless Solutions
PROJECT
SIZE
TITLE
VER
107
A
DATE
2018-02-09
Reference DesignEG9x
A2
Audio Interface
Handset Application
CTIA
OMTP
R0702/R0705
R0701/R0704
M
M
NM
NM
Earphone Application
Close to earphone interface.
1. The analog output only drives earphone and headset. For larger power loads such as speakers, an audio power amplifier should be added in the design.
Notes:
5. ALC5616 and TLV320AIC3104 cannot be used simultaneously in audio codec
2. In handset application, route the MIC and SPK signal traces as differential pairs respectively.
3. In earphone application, route the MIC signal traces as differential pairs.
4. All MIC and SPK signal traces should be routed with total grounding and far away from noise such as clock and DC-DC signals, etc.
4
1
3
2
J0701
D0701
ESD9X5.0ST5G
D0702
C0702
33pF
C0704
33pF
C0705
10pF
C0703
10pF
C0706
33pF
C0701
10pF
C0709
10pF
C0710
33pF
C0711
10pF
C0712
33pF
C0708
33pF
C0707
10pF
F0701
0R
F0702
0R
F0704
0R
F0703
0R
D0703
PESD5V0S1BL
D0704
C0713
10pF
C0714
33pF
C0715
4.7uF
1
2
3
4
5
J0702
C0716
10pF
C0717
33pF
D0705
ESD9X5.0ST5G
R0702 NM_0R
R0701 0R
R0704
0R
R0705
NM_0R
D0706
PESD5V0S1BL
C0718
10pF
C0719
33pF
D0707
PESD5V0S1BL
C0720
10pF
C0721
33pF
R0703 0R
R-0805
[5,6]
SPK_P
[5,6,7]
MIC_P
[5,6,7]
MIC_N
[5,6]
SPK_N
[5,6,7]
MIC_N
[5,6]
SPK_R
[5,6]
SPK_L
[5,6,7] MIC_P
[5,6,7]
MIC_P
Quectel Wireless Solutions
Reference Design
Felix YIN
EG9x
Yeoman CHEN
CHECKED BY
DRAWN BY
OF
A
6
5
4
32
1
SHEET
A
B
C
D
123456
D
C
B
PROJECT
SIZE
TITLE
VER
108
A
DATE
2018-02-09
A2
(U)SIM Interface
USIM1 Interface
USIM2 Interface
6. EG9x module provides two input pins (USIM1_PRESENCE and USIM2_PRESENCE) to detect whether the USIM1 and USIM2 cards are present or not. It supports both low level and high level detections.
For more details, please refer to EG91 and EG95 Hardware Designs.
5. The decouple capacitor of USIM1_VDD and USIM2_VDD should be less than 1uF and must be placed near to (U)SIM card connector.
Notes:
1. R0801
R0803 and R0806R0808 are used for debugging, C0802C0804 and C0806C0808 are used for filtering interference of GSM900MHz.
4. R0804 and R0809 can improve anti-jamming capability of the (U)SIM circuit, and they should be placed close to the (U)SIM card connector.
2. It is recommended to connect the (U)SIM card connector GND to the module USIM_GND. If the ground is complete on customers' PCB, USIM_GND can be connected to PCB ground directly.
3. U0801 and U0802 is recommended to be used to offer good ESD protection, and the parasitic capacitance should not be more than 15pF.
C0801
100nF
1
2
3
4
5
6
U0801
ESDA6V8AV6
C0803
33pF
C0804
33pF
C0802
33pF
R0801
0R
R0802
0R
R0803
0R
R0804
15K
GND
VPP
I/OCLK
RST
VCC
PRESENCE
J0801
(U)SIM card connector
R0805
51K
C0805
100nF
1
2
3
4
5
6
U0802
ESDA6V8AV6
C0807
33pF
C0808
33pF
C0806
33pF
R0806
0R
R0807
0R
R0808
0R
R0809
15K
GND
VPP
I/OCLK
RST
VCC
PRESENCE
J0802
(U)SIM card connector
R0810
51K
USIM1_VDD
[1]
USIM1_RST
[1]
USIM1_CLK
[1]
USIM1_DATA
USIM1_VDD
[1,8]
USIM_GND
VDD_EXT
[1]
USIM1_PRESENCE
USIM2_VDD
[1]
USIM2_RST
[1]
USIM2_CLK
[1]
USIM2_DATA
USIM2_VDD
[1,8]
USIM_GND
VDD_EXT
[1]
USIM2_PRESENCE
Yeoman CHEN
CHECKED BY
Quectel Wireless Solutions
TITLE
PROJECT
Felix YIN
DRAWN BY
OF
A
6
5
4
32
1
SHEET
A
B
C
D
123456
D
C
B
SIZE
VER
109
A
DATE
2018-02-09
EG9x
A2
Main Antenna Interface
Diversity Antenna Interface
C0901 and C0902 are reserved for impedance matching.
Reference Design
C0903 and C0904 are reserved for impedance matching.
GNSS Antenna Interface
C0905 and C0906 are reserved for impedance matching.
RF and GNSS Designs
C0901
NM
R0901
0R
C0903
NM
R0902
0R
J0901
Main antenna
J0902
Diversity antenna
C0902
NM
C0904
NM
C0905
NM
R0903
0R
J0903
Gnss antenna
C0906
NM
[1]
ANT_MAIN
[1]
ANT_DIV
[1]
ANT_GPS
Yeoman CHEN
CHECKED BY
Felix YIN
DRAWN BY
Quectel Wireless Solutions
A
EG9x
PROJECT
TITLE
OF
A
6
5
4
32
1
SHEET
A
B
C
D
123456
D
C
B
SIZE
VER
1010 DATE
2018-02-09
A2
Indicators
Indicator and Test Points
Refer to the document EG91 and EG95 Hardware Designs for more details about NETLIGHT.
Note:
Reserved Test Points
Notes:
1. Both USB and debug UART interfaces are reserved for software debugging.
3. Keep USB test points to USB pins as close as possible.
Reference Design
2. USB interface can also be used to upgrade firmware.
4. Please note that junction capacitance of ESD protection components on USB data lines
might influence the signal. Typically, the capacitance should be less than 1pF.
SPI_MOSI
SPI_MISO
SPI_CLK
Note:
It is a dedicated one-to-one connection and no chip select.
SPI Connection
Note:
When USB_BOOT is at high level, the module will be forced
to enter into download mode.
Emergency Download Mode
Q1002
DTC043ZEBTL
R1002
2.2K
D1002
4
5
6
3
2
1
7
8
J1001
D1005
SD12
D1006
ESD9X3.3ST5G
D1004
ESD9L5.0ST5G
D1003
ESD9L5.0ST5G
D1007
ESD9X3.3ST5G
D1008
ESD9X3.3ST5G
Q1001
DTC043ZEBTL
R1001
2.2K
D1001
1
2
3
U1001
Peripheral
1
2
J1002
T-PIN-1X2
R1003
10K
D1009
ESD9X3.3ST5G
[1]
NETLIGHT
VBAT
[1,3,10]
VBAT
[1,2]
PWRKEY
[1]
USB_DP_TEST
[1]
USB_DM_TEST
[1,2]
USB_VBUS
[1]
DBG_RXD
[1]
DBG_TXD
[1]
STATUS
VBAT
[1]
SPI_MISO
[1]
SPI_MOSI
[1]
SPI_CLK
[1,2,3,4,8]
VDD_EXT
[1]
USB_BOOT
  • Page 1 1
  • Page 2 2
  • Page 3 3
  • Page 4 4
  • Page 5 5
  • Page 6 6
  • Page 7 7
  • Page 8 8
  • Page 9 9
  • Page 10 10
  • Page 11 11
  • Page 12 12
  • Page 13 13
  • Page 14 14
  • Page 15 15

Quectel EG9 Series Reference Design

Type
Reference Design

Quectel EG9 Series is an industrial-grade LTE Cat 4 module that supports a maximum data rate of 150Mbps downlink and 50Mbps uplink. It has a compact and unified form factor, making it suitable for a wide range of IoT applications. The module also supports multiple GNSS constellations, including GPS, GLONASS, BeiDou, Galileo, and QZSS, ensuring accurate positioning. Additionally, the Quectel EG9 Series features rich interfaces, including UART, USB, GPIO, and ADC, allowing for flexible connectivity with various external devices.

Ask a question and I''ll find the answer in the document

Finding information in a document is now easier with AI