Quectel EG21-G Reference Design

  • Hello! I am an AI chatbot trained to assist you with the Quectel EG21-G Reference Design. I’ve already reviewed the document and can help you find the information you need or explain it in simple terms. Just ask your questions, and providing more details will help me assist you more effectively!
EG21-G
Reference Design
LTE Standard Module Series
Rev. EG21-G_Reference_Design_V1.0
Date: 2019-12-05
Status: Released
www.quectel.com
LTE Standard Module Series
EG21-G Reference Design
EG21-G_Reference_Design 1 / 8
Our aim is to provide customers with timely and comprehensive service. For any
assistance, please contact our company headquarters:
Quectel Wireless Solutions Co., Ltd.
Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai,
China 200233
Tel: +86 21 5108 6236
Or our local office. For more information, please visit:
http://www.quectel.com/support/sales.htm
For technical support, or to report documentation errors, please visit:
http://www.quectel.com/support/technical.htm
Or email to: support@quectel.com
GENERAL NOTES
QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION
PROVIDED IS BASED UPON CUSTOMERS’ REQUIREMENTS. QUECTEL MAKES EVERY EFFORT
TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT
MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT
ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR
RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO
CHANGE WITHOUT PRIOR NOTICE.
COPYRIGHT
THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF
QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION
AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE
FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF
DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR
REGISTRATION OF A UTILITY MODEL OR DESIGN.
Copyright © Quectel Wireless Solutions Co., Ltd. 2019. All rights reserved.
LTE Standard Module Series
EG21-G Reference Design
EG21-G_Reference_Design 2 / 8
About the Document
Revision History
Revision
Date
Author
Description
1.0
2019-12-05
Lim PENG/
Woody WU
Initial
LTE Standard Module Series
EG21-G Reference Design
EG21-G_Reference_Design 3 / 8
Contents
About the Document ................................................................................................................................... 2
Contents ....................................................................................................................................................... 3
Figure Index ................................................................................................................................................. 4
1 Reference Design ................................................................................................................................. 5
1.1. Introduction ................................................................................................................................ 5
1.2. Power-on/off and Resetting Scenarios ...................................................................................... 6
1.2.1. Power-on Scenario ........................................................................................................... 6
1.2.2. Power-off Scenario ........................................................................................................... 7
1.2.3. Resetting Scenario ........................................................................................................... 8
1.3. Schematics ................................................................................................................................ 8
LTE Standard Module Series
EG21-G Reference Design
EG21-G_Reference_Design 4 / 8
Figure Index
FIGURE 1: TIMING OF TURNING ON MODULE ............................................................................................... 6
FIGURE 2: TIMING OF TURNING OFF MODULE ............................................................................................. 7
FIGURE 3: TIMING OF RESETTING MODULE ................................................................................................. 8
LTE Standard Module Series
EG21-G Reference Design
EG21-G_Reference_Design 5 / 8
1 Reference Design
1.1. Introduction
This document provides the reference design for Quectel EG21-G module. And the reference design
includes power-on/off/resetting scenarios, block diagrams of power supply and module design, UART
interfaces, (U)SIM interface, audio interfaces, etc.
LTE Standard Module Series
EG21-G Reference Design
EG21-G_Reference_Design 6 / 8
1.2. Power-on/off and Resetting Scenarios
1.2.1. Power-on Scenario
V
IL
0.5V
V
H
=0.8V
VBAT
PWRKEY
500ms
RESET_N
STATUS
(OD)
Inactive
Active
UART
NOTE 1
Inactive
Active
USB
2.5s
12s
13s
VDD_EXT
About 100ms
BOOT_CONFIG &
USB_BOOT Pins
100ms. After this time, the BOOT_CONFIG
pins can be set to high level by external circuit.
Figure 1: Timing of Turning on Module
1. Please make sure that VBAT is stable before pulling down PWRKEY pin. The time between them is
no less than 30ms.
2. When using MCU to control module to enter the emergency download mode, please follow the above
timing sequence. It is not recommended to pull up USB_BOOT to 1.8V before powering up VBAT.
Short the test points as shown in Figure 28 can manually force the module to enter download mode.
LTE Standard Module Series
EG21-G Reference Design
EG21-G_Reference_Design 7 / 8
1.2.2. Power-off Scenario
VBAT
PWRKEY
29.5s
650ms
RUNNING
Power-down procedure
OFF
Module
Status
STATUS
(OD)
Figure 2: Timing of Turning off Module
1. In order to avoid damaging internal flash, please do not switch off the power supply when the module
works normally. Only after the module is shut down by PWRKEY or AT command, the power supply
can be cut off.
2. When turning off module with the AT command, please keep PWRKEY at a high level after the
execution of the command. Otherwise, the module will turn itself back on after being shut down.
LTE Standard Module Series
EG21-G Reference Design
EG21-G_Reference_Design 8 / 8
1.2.3. Resetting Scenario
V
IL
0.5V
V
IH
1.3V
VBAT
150ms
Resetting
Module
Status
Running
RESET_N
Restart
460ms
Figure 3: Timing of Resetting Module
1. Please ensure that there is no large capacitance with the max value exceeding 10nF on PWRKEY
and RESET_N pins.
2. RESET_N only resets the internal baseband chip of the module and does not reset the power
management chip.
3. It is recommended to use RESET_N only when failing to turn off the module by AT+QPOWD
command or PWRKEY pin.
1.3. Schematics
The schematics illustrated in the following pages are provided for your reference only.
NOTES
A2
EG21-G Reference Design
2019/12/5
DATE
1.0
114
VER
TITLE
SIZE
PROJECT
Quectel Wireless Solutions
B
C
D
6543 21
D
C
B
A
SHEET
1
23
4
5
6
A
OF
DRAWN BY
CHECKED BY
Woody WU
Lorry XU
Power Supply Block Diagram
DC-DC
DC 5V OUT
e.g. DC 12V IN
DC 3.8V @2.0A
EG21-G
MIC29302WU
MOS ON/OFF
USB_VBUS
EN
VBAT_EN
SGM2019-ADJYN5G/TR
DC 3.3V
SGM2019-ADJYN5G/TR
DC 1.8V
CODEC_
EN
EN
VDD_EXT
MIC29302WU
EN
ALC5616
TLV320AIC3104
or
Codec
VBUS_CTRL
EN
POWER_EN
SD card
MOS ON/OFF
EN
DC 3.3V @0.8A
SD_PWR_EN
SGMII
DC 3.3V @0.8A
51K
EG21-G
A2
Reference Design
2019/12/5
DATE
1.0
214
VER
TITLE
SIZE
PROJECT
Quectel Wireless Solutions
B
C
D
6543 21
D
C
B
A
SHEET
1
23
4
5
6
A
OF
DRAWN BY
CHECKED BY
Woody WU
Lorry XU
NOTE:
A transistor translation circuit or a level translator TXS0108EPWR provided by Texas Instruments is recommended.
Reference Design Block Diagram
EG21-G
(U)SIM
VDD_EXT
FORCE_USB_BOOT
PCM
ANT_MAIN
ADC0
ADC1
MAIN UART
I2C
ANT_MAIN
WAKEUP_IN
STATUS
NET_MODE
NET_STATUS
MCU
PWRKEYGPIO_03
GPIO_04 RESET_N
GPIO_08
GPIO_05 W_DISABLE#
GPIO_06
USB USB
3.3V/1.8V
ALC5616
TLV320AIC3104
or
(U)SIM Card
SDC2
SD Card
UART
DEBUG UART
Test Points
12-bit ADC
0.3V
VBAT_BB
Status Indication
NOTE
VBAT
3.8V, 2.0A
AP_READY
GPIO_01
GPIO_02
GPIO_07
GPIO_09
VDD
VBAT_EN
VBUS_CTRL
CODEC_POWER_EN
SD_PWR_EN
VDD_MCU
VBAT
Transistor
Circuit
Main Antenna
Handset
or
Earphone
Level Translator
AR8033-AL1B-R
FC3004
SGMII
EPHY
RJ45
ANT_GNSS
ANT_GNSS
GNSS Antenna
ANT_DIV
ANT_DIV
Rx-diversity
Antenna
1.0
EG21-G
TITLE
PROJECT
Reference Design
A2
2019/12/5
DATE314
VER
SIZE
Quectel Wireless Solutions
B
C
D
6543 21
D
C
B
A
SHEET
1
23
4
5
6
A
OF
DRAWN BY
CHECKED BY
Woody WU
Lorry XU
Module Interface
1. Keep all RESERVED and unused pins unconnected, and ensure all GND pins are connected to the ground network.
Notes:
2. Pins 73
84 are unused in the design, and can be ignored in schematic and PCB decal.
3. A common mode choke L0101 is recommended to be added in series between the module and customers' MCU in order to
Meanwhile, it is recommended to reserve the test points for upgrading the firmware over USB interface and minimize the
4. ADC pins cannot be directly connected to the module's power supply and the input voltage must not exceed VABT_BB.
5. C0101 and C0102 should be placed close to the SGMII interface of the module.
Note 3
Note 6
Note 4
EG21-G
EG21-G
Note 5
extra stubs of the trace. The two resistors should be placed close to the module.
suppress EMI spurious transmission, and should be placed close to the module.
6. Do not pull up pin1,pin5, pin40,pin136,pin137and pin138 unless the module starts up sucessfully.
Meanwhile, these pins should be served as a keepout area.
R0111 NM_0R
R0109
NM_0R
R0113
100K
R0114
100K
R0116
100K
R0115
100K
R0118
0R
R0120
0R
R0122
0R
R0124
0R
R0108
0R
R0104 0R
R0106
0R
R0102 0R
1
WAKEUP_IN
2
AP_READY
3
RESERVED
4
W_DISABLE#
5
NET_MODE
6
NET_STATUS
7
VDD_EXT
8
GND
9
GND
10
USIM_GND
11
DBG_RXD
12
DBG_TXD
13
USIM_PRESENCE
14
USIM_VDD
15
USIM_DATA
16
USIM_CLK
17
USIM_RST
18
RESERVED
19
GND
20
RESET_N
21
PWRKEY
22
GND
23
SD2_INS_DET
24
PCM_IN
25
PCM_OUT
26
PCM_SYNC
27
PCM_CLK
28
SDC2_DATA3
29
SDC2_DATA2
30
SDC2_DATA1
31
SDC2_DATA0
32
SDC2_CLK
33
SDC2_CMD
34
VDD_SDIO
35
ANT_DIV
36
GND
37
RESERVED
38
RESERVED
39
RESERVED
40
RESERVED
41
I2C_SCL
42
I2C_SDA
43
RESERVED
44
ADC1
45
ADC0
46
GND
47
ANT_GNSS
48
GND
49
ANT_MAIN
50
GND
51
GND
52
GND
53
GND
54
GND
55
RESERVED
56
GND
57
VBAT_RF
58
VBAT_RF
59
VBAT_BB
60
VBAT_BB
61
STATUS
62
RI
63
DCD
64
CTS
65
RTS
66
DTR
67
TXD
68
RXD
69
USB_DP
70
USB_DM
71
USB_VBUS
72
GND
115
USB_BOOT
116
RESERVED
113
RESERVED
114
RESERVED
141
RESERVED
142
RESERVED
143
RESERVED
144
RESERVED
U0101-A
85
GND
86
GND
87
GND
88
GND
89
GND
90
GND
91
GND
92
GND
93
GND
94
GND
95
GND
96
GND
97
GND
98
GND
99
GND
100
GND
101
GND
102
GND
103
GND
104
GND
105
GND
106
GND
107
GND
108
GND
109
GND
110
GND
111
GND
112
GND
117
RESERVED
118
RESERVED
119
EPHY_RST_N
120
EPHY_INT_N
121
SGMII_MDATA
122
SGMII_MCLK
123
SGMII_TX_M
124
SGMII_TX_P
125
SGMII_RX_P
126
SGMII_RX_M
127
RESERVED
128
USIM2_VDD
129
RESERVED
130
RESERVED
131
RESERVED
132
RESERVED
133
RESERVED
134
RESERVED
135
RESERVED
136
RESERVED
137
RESERVED
138
RESERVED
139
RESERVED
140
RESERVED
U0101-B
C0101
100nF
C0102
100nF
12
34
L0101
DLM0NSN900HY2D
[6]
USIM_GND
[14]
DBG_RXD
[14]
DBG_TXD
[6]
USIM_VDD
[6]
USIM_CLK
[6]
USIM_RST
[6]
USIM_DATA
[4,5,6,11,13,14]
VDD_EXT
[14]
NET_STATUS
[14]
NET_MODE
[4]
W_DISABLE_EG21-G
[4]
AP_READY_EG21-G
[4]
RESET_N
[4,14]
PWRKEY
[10]
ANT_DIV
[10]
ANT_MAIN
[10]
ANT_GNSS
[4,14]
USB_VBUS
[6]
RXD_EG21-G
[6]
TXD_EG21-G
[6]
DTR_EG21-G
[6]
RTS_EG21-G
[6]
CTS_EG21-G
[6]
DCD_EG21-G
[6]
RI_EG21-G
[14]
STATUS
[3,5,14]
VBAT
[3,5,14]
VBAT
[6]
USIM_PRESENCE
[7,8]
CODEC_PCM_IN
[7,8]
CODEC_PCM_OUT
[7,8]
CODEC_PCM_SYNC
[7,8]
CODEC_PCM_CLK
[7,8]
I2C_SDA
[14]
USB_DM_TEST
[14]
USB_DP_TEST
ADC0_INPUT
ADC1_INPUT
[7,8]
I2C_SCL
[14] USB_BOOT
[4]
WAKEUP_IN_EG21-G
[13]
SD2_INS_DET
[13]
SD2_DATA3
[13]
SD2_DATA2
[13]
SD2_DATA1
[13]
SD2_DATA0
[13]
SD2_CLK
[13]
SD2_CMD
[13]
VDD_SDIO
[11]
USIM2_VDD
[11]
SGMII_RX_M
[11]
SGMII_RX_P
[11]
SGMII_TX_P
[11]
SGMII_TX_M
[11]
SGMII_MDIO_CLK
[11]
SGMII_MDIO_DATA
[11]
EPHY_INT_N
[11]
EPHY_RST_N
[4]
USB_DP
[4]
USB_DM
TITLE
PROJECT
Lorry XU
Woody WU
CHECKED BY
DRAWN BY
OF
A
6
5
4
32
1
SHEET
A
B
C
D
123456
D
C
B
Quectel Wireless Solutions
SIZE
VER
144
1.0
DATE
2019/12/5
EG21-G
A2
Reference Design
5V power source from main board.
It is used to reset the module.
It is used to turn on or off the module.
MCU Interface
The USB_VBUS pins of MCU and EG21-G should be powered by a 5V power system for USB detection, and USB_VBUS_CTRL is used to turn on/off USB_VBUS power supply.
2. EG21-G can only work as a USB device and supports Full Speed and High Speed modes. To communicate with USB interface, MCU needs to support USB host or OTG function.
1. U0201 represents customers's MCU. The power domain of GPIO interfaces on EG21-G modules is 1.8V. If the domain on U0201's GPIO interfaces is the same, then the level translation circuit can be omitted.
Notes:
3. AP_READY is used to detect the MCU's sleep state. For more details, please refer to
It is used to wake up the module.
It is used to let the module enter airplane mode.
4. WAKEUP_IN_EG21-G should be kept at low level before the module starts up successfully.
Quectel_EG21-G_Hardware_Design.
G
S
D
Q0205
SI2333CDS-T1
Q0207
DTC043ZEBTL
R0204
10K
Q0202
DTC043ZEBTL
Q0201
DTC043ZEBTL
Q0206
2SC4617TLQ
R0201
4.7K
R0202
4.7K
Q0204
DTC043ZEBTL
Q0203
DTC043ZEBTL
VDD
GND
TXD
RXD
CTS
RTS
USB_VBUS
USB_D+
USB_D-
GPIO_01
GPIO_02
GPIO_03
USB_ID
GPIO_04
GPIO_05
GPIO_06
GPIO_07
GPIO_08
GPIO_09
GPIO_10
GPIO_11
GPIO_12
GPIO_13
RI
DCD
DTR
U0201
C0201
10nF
C0202
10nF
C0203
10nF
C0204
1nF
VDD_MCU
[6]
RXD
[6]
TXD
[3]
USB_DP
[3]
USB_DM
[3,4,14]
USB_VBUS
[4]
ON/OFF_MCU
[4]
RESET_MCU
[4]
VBUS_CTRL
[5,14]
DC_5V
[3,4,14]
USB_VBUS
[4]
VBUS_CTRL
[4]
W_DISABLE_MCU
[4]
SLEEP_STATUS
[3]
RESET_N
[4]
RESET_MCU
[3,14]
PWRKEY
[4]
ON/OFF_MCU
[6]
CTS
[6]
RTS
[5]
VBAT_EN
[3]
AP_READY_EG21-G
[4]
SLEEP_STATUS
VDD_EXT
VDD_EXT
[3]
W_DISABLE_EG21-G
[4]
W_DISABLE_MCU
[5]
CODEC_POWER_EN
[3]
WAKEUP_IN_EG21-G
[4]
WAKEUP_IN_MCU
[4]
WAKEUP_IN_MCU
[13]
SD_PWR_EN
[6]
DTR
[6]
RI
[6]
DCD
1.0
EG21-G
PROJECT
TITLE
Lorry XU
Woody WU
CHECKED BY
DRAWN BY
OF
A
6
5
4
32
1
SHEET
A
B
C
D
123456
D
C
B
Quectel Wireless Solutions
SIZE
VER
145 DATE
2019/12/5
A2
Reference Design
DC-DC Application
Notes:
2. VBAT should be routed in star mode to VBAT_BB and VBAT_RF pins.
Power Supply Design
VBAT Design
Closed to VBAT_BB pins.
Closed to VBAT_RF pins.
1. The power supply must be able to provide sufficient current up to 2A or more.
VDD_1V8 = (R0310/R0312+1)*1.207 = 1.8V
Power Supply for PCM Codec
VDD_3.3V = (R0305/R0308+1)*1.207 = 3.3V
LDO Application
It is used when the input voltage is below 7V.
VBAT = (R0301/R0307+1)*1.24 = 3.88V
The recommended load current is greater than 10mA.
Power Supply for SGMII and SD Card
VBAT = (R0314/R0318+1)*1.24 = 3.3V
Note:
DC-DC LDO
LDO
DC 1.8V
LDO
DC 3.3V
Codec
LDO
DC 3.3V 3.0A
EG21-G
SD Card
DC 5V OUT
DC 3.8V 2.0A
e.g. DC12V IN
3. The recommended operating voltage of VBAT is 3.3V4.3V.
The recommended load current of MIC29302WU is greater than 10mA.
Notes:
1. CODEC_POWER_EN must be at low level in order to ensure the normal output voltage of VDD_3.3V.
2. The following power-on/off sequences should be complied with to ensure the audio codec
Power-on Sequence: power on VDD_1V8 first, then VDD_3.3V.
Note 1
If VDD_3.3V power supply needs to be switched off, please keep CODEC_POWER_EN at high level.
SGMII
It is used when the input voltage is above 7V. Use a DC-DC converter to convert a high input voltage
into a 5V output, and then the LDOs will generate 3.8V, 3.3V and 1.8V typical voltages.
Power-off Sequence: power off VDD_3.3V first, then VDD_1V8.
works normally.
+
C0301
100μF
C0302
100nF
C0303
33pF
C0304
10pF
C0306
100nF
C0307
33pF
C0308
10pF
+
C0305
100μF
D0301
WS4.5D3HV
1
IN
3
EN
5
OUT
4
BP
2
GND
U0303
SGM2019-ADJYN5G/TR
C0320
4.7μF
R0310
39K
1%
R0312
75K
1%
C0318
100nF
C0321
100nF
C0322
33pF
C0319
1μF
C0315
4.7μF
R0305
73.2K
1%
R0308
42.2K
1%
C0316
100nF
C0313
1μF
C0314
100nF
1
IN
3
EN
5
OUT
4
BP
2
GND
U0302
SGM2019-ADJYN5G/TR
C0317
33pF
R0306
10K
+
C0311
470μF
1
EN
2
IN
3
GND
4
OUT
5
ADJ
U0301
MIC29302WU
C0312
100nF
C0310
100nF
+
C0309
470μF
R0301
100K
1%
R0307
47K
1%
R0302
51K
R0303
330R
Q0301
DTC043ZEBTL
R0311
100K
R0309
0R
+
C0325
470μF
1
EN
2
IN
3
GND
4
OUT
5
ADJ
U0304
MIC29302WU
C0326
100nF
C0324
100nF
+
C0323
470μF
R0314
75K
1%
R0318
47K
1%
R0313
51K
R0315
330R
Q0304
DTC043ZE
[3,5,14]
VBAT
[3,5,14]
VBAT
VBAT
VDD_1V8
VDD_3.3V
[4,5,14]
DC_5V
[4]
CODEC_POWER_EN
[4,5,14]
DC_5V
VBAT
[4]
VBAT_EN
[4,5,14]
DC_5V
[3,4,6,11,13,14]
VDD_EXT
[4,5,14]
DC_5V
VDD3V3
[5,7,8]
VDD_1V8
TITLE
PROJECT
Lorry XU
Woody WU
CHECKED BY
DRAWN BY
OF
A
6
5
4
32
1
SHEET
A
B
C
D
123456
D
C
B
Quectel Wireless Solutions
SIZE
VER
146
1.0
DATE
2019/12/5
EG21-G
A2
Reference Design
(U)SIM and UART Designs
UART Translation - Transistor Solution
UART Translation - IC Solution
Notes:
(U)SIM Interface
1. There are two translation solutions: transistor solution and IC solution,
3. The transistor circuit solution is not suitable for applications with high baud rates exceeding 460Kbps.
The 1nF capacitors C0402 and C0403 can improve the signal quality.
2. The power supply voltage of VCCA should not exceed that of VCCB.
Notes:
1. U401 is recommended to be used to offer good ESD protection,
2. It is recommended to connect the (U)SIM card connector's GND to the module's USIM_GND.
3. The pull-up resistor R0401 can improve anti-jamming capability,
4. R0407
R0409 are used for debugging,
5. C0401 capacitance should be less than 1μF.
4. The RTS and DTR transistor circuits are similar to that of RXD interface.
If the ground is complete on customers' PCB, USIM_GND can be connected to PCB ground directly.
and the parasitic capacitance should not be more than 15pF.
and should be placed close to the (U)SIM card connector.
6. For more information about the layout, please refer to
For more information about TXS0108E, please refer to the datasheet from TI.
The CTS, RI and DCD transistor circuits are similar to that of TXD interface.
and C0404
C0406 are used for filtering interference of EGSM900.
and should be placed close to the (U)SIM card connector.
and IC solution is recommended to be selected.
Quectel_EG21-G_Hardware_Design.
Q0401
2SC4617TLQ
Q0402
2SC4617TLQ
R0406
10K
R0405
10K
R0403
10K
R0404
10K
C0401
100nF
1
GND
2
VPP
3
I/O
4
CLK
5
RST
6
VCC
78
PRESENCE
J0401
(U)SIM card connector
1
2
3
4
5
6
U0401
ESDA6V8AV6
R0402
51K
C0405
33pF
C0406
33pF
C0404
33pF
R0407
0R
R0408
0R
R0409
0R
R0401
15K
C0407
100nF
R0411
120K
R0410
10K
C0408
100nF
6
A5
7
A6
8
A7
9
A8
10
OE
5
A4
4
A3
19
VCCB
20
B1
18
B2
14
B6
13
B7
12
B8
11
GND
3
A2
2
VCCA
1
A1
17
B3
16
B4
15
B5
U0402
TXS0108E
C0403
1nF
C0402
1nF
[4,6] RXD
[3,6]
RXD_EG21-G
VDD_EXT
VDD_EXT
[4,6] TXD
[3,6]
TXD_EG21-G
VDD_EXTVDD_MCU
[3]
USIM_GND
VDD_EXTUSIM_VDD
[3]
USIM_RST
[3]
USIM_CLK
[3]
USIM_DATA
USIM_VDD
[3]
USIM_PRESENCE
VDD_EXT
VDD_EXT
VDD_MCU
[3,6]
TXD_EG21-G
[3,6]
RXD_EG21-G
[3]
RI_EG21-G
[3]
DTR_EG21-G
[4,6]
TXD
[4,6]
RXD
[4]
DTR
[4]
RI
[4]
CTS
[4]
RTS
[3]
CTS_EG21-G
[3]
RTS_EG21-G
[3]
DCD_EG21-G
[4]
DCD
TITLE
PROJECT
Lorry XU
Woody WU
CHECKED BY
DRAWN BY
OF
A
6
5
4
32
1
SHEET
A
B
C
D
123456
D
C
B
Quectel Wireless Solutions
SIZE
VER
147
1.0
DATE
2019/12/5
EG21-G
A2
Reference Design
Audio Codec Design (ALC5616)
1. ALC5616 power-on sequence: DBVDD/I2C pull-up power/AVDD/DACREF/CPVDD -> MICVDD -> software initialization.
Notes:
2. ALC5616 power-off sequence: close codec function by software -> MICVDD -> DBVDD/I2C pull-up power/AVDD/DACREF/CPVDD.
3. EG21-G will automatically initialize the codec via I2C interface after it is turned on successfully, so all power supplies for the codec need to be powered on before that.
4. Pin AGND and DGND of ALC5616 are connected together through 0R resisitor R0703.
5. The maximum output power of the codec is 30mW when the headphone driver with 32Ω load is used.
2
IN1P/DMC_DAT
3
IN2P
4
IN2N/JD2
5
DACREF
6
AVDD
7
AGND
10
LOUTR/N
11
CPN2
12
CPP2
13
CPN1
14
CPP1
15
CPVDD
16
CPVPP
18
CPVREF
19
CPVEE
20
HPO_L
21
ADCDAT1
22
DACDAT1
23
LRCK1
26
SCL
27
SDA
28
GPIO1/IRQ1
29
DBVDD
30
DCVDD
31
MICVDD
32
MICBIAS1
8
VREF2
24
BCLK1
1
JD1
9
LOUTL/P
17
HPO_R
25
MCLK
33
DGND
U0501
ALC5616
C0504
4.7μF
C0505
4.7μF
C0506
100nF
R0503
0R
C0502
4.7μF
C0503
100nF
C05112.2μF
C0512100nF
C05074.7μF
C0508
100nF
C0510
2.2μF
C0514 2.2μF
C0516 2.2μF
C0513
4.7μF
R0507
0R
R0516
NM_10K
R0517
4.7K
R0518
4.7K
C0528 4.7μF
C0523 2.2μF
C0524 2.2μF
R0509
0R
R0511
0R
R0513
0R
R0515
0R
C0526
NM
C0525
NM
C0527
NM
C0515
2.2μF
C0517
2.2μF
R0514
1K
R0506
1.5K
R0505
1K
R0508
1.5K
C0519
10μF
R0502
0R
C0518 1μF
C0520 1μF
C0521 1μF
C0522 1μF
R0510
0R
R0512
0R
R0501
0R
R0504
0R
C0509NM_33pF
C0501
NM_33pF
R0519
0R
R0520
0R
VDD_3.3V
VDD_1V8
VDD_3.3V
[3,8]
I2C_SDA
[3,8]
I2C_SCL
VDD_1V8
VDD_1V8
[3,8]
CODEC_PCM_OUT
[3,8]
CODEC_PCM_IN
[3,8]
CODEC_PCM_CLK
[3,8]
CODEC_PCM_SYNC
[7]
MIC+
[7]
MIC-
[8,9]
SPK_P
[8,9]
SPK_N
MICBIAS
[8,9]
MIC_P
[8,9]
MIC_N
MICBIAS
[7]
MIC+
[7]
MIC-
VDD_1V8
[8,9]
SPK_R
[8,9]
SPK_L
1.0
EG21-G
PROJECT
TITLE
A2
Reference Design
2019/12/5
DATE814
VER
SIZE
Quectel Wireless Solutions
B
C
D
6543 21
D
C
B
A
SHEET
1
23
4
5
6
A
OF
DRAWN BY
CHECKED BY
Woody WU
Lorry XU
Power on reset
Differential signals, and are connected to handset and audio power amplifier.
Left and right channels, and are connected to headset.
Delay Circuit
Audio Codec Design (TLV320AIC3104)
1. TLV320AIC3104 power-on sequence: IOVDD -> AVDD/DRVDD -> DVDD -> software initialization.
Notes:
2. The RC delay circuit, which is assembled with C0621 and R0608, is used to ensure that the power-on time difference between AVDD and DVDD is within 5ms.
4. EG21-G will automatically initialize the codec via I2C interface after it is turned on successfully,
3. The RESET pin must be driven at low level for at least 10ns after all power supplies for TLV320AIC3104 are at their specified values.
5. The AGND and DGND of TLV320AIC3104 are connected together through 0R resisitor R0703 in Sheet 7.
so all power supplies for the codec need to be powered on before that.
6.The maximum output power of the codec is 15mW when the surround stereo headphone driver with 32Ω load is used, and is 30mW when the surround stereo
headphone driver with 16Ω load is used.
1
MCLK
2
BCLK
3
WCLK
4
DIN
5
DOUT
6
DVSS
7
IOVDD
8
SCL
9
SDA
10
MIC1LP/LINE1LP
11
MIC1LM/LINE1LM
12
MIC1RP/LINE1RP
13
MIC1RM/LINE1RM
14
MIC2L/LINE2L/MICDET
15
MICBIAS
16
MIC2R/LINE2R
17
AVSS1
18
DRVDD
19
HPLOUT
20
HPLCOM
21
DRVSS
22
HPRCOM
23
HPROUT
24
DRVDD
25
AVDD
26
AVSS2
27
LEFT_LOP
28
LEFT_LOM
29
RIGHT_LOP
30
RIGHT_LOM
31
RESET
32
DVDD
33
GND
U0601
TLV320AIC3104
C0619
100nF
C0618
100nF
R0614
1.5K
R0616
1.5K
C0613
2.2μF
C0605
100nF
C0611
10uF
C0606
1μF
C0607
100nF
C0608
1μF
C0610
1μF
C0614
100nF
C0615
1μF
R0613
0R
C0616
100nF
C0617
1μF
C0622
1μF
C0623
1μF
R0607
10K
R0605
0R
R0604
0R
R0601
0R
R0603
0R
C0612
100nF
C0603
NM
C0601
NM
C0602
NM
C0609
100nF
R0609
1K
R0612
1K
C0620
10μF
R0610
4.7K
R0611
4.7K
R0617
10K
G
SD
Q0601
Si2333DS-T1-E3
C0621
10nF
R0608
100K
Q0602
DTC043ZEBTL
R0615
NM_0R
C0624
22μF
C0604
22μF
R0606
NM_0R
R0602
0R
R0618
0R
R0619
0R
R0620
0R
R0621
0R
[7,9]
MIC_P
[7,9]
MIC_N
MICBIAS_3104
[3,7]
I2C_SCL
[3,7]
I2C_SDA
VDD_3.3V
VDD_1V8
[7,9]
SPK_P
[7,9]
SPK_N
DVDD
[3,7]
CODEC_PCM_CLK
[3,7]
CODEC_PCM_SYNC
[7,9]
SPK_R
[7,9]
SPK_L
[5,7,8]
VDD_1V8
[8]
DVDD
[5,7,8]
VDD_3.3V
[8]
DVDD
[5,7,8]
VDD_1V8
[3,7]
CODEC_PCM_OUT
[3,7]
CODEC_PCM_IN
PROJECT
TITLE
Lorry XU
Woody WU
CHECKED BY
DRAWN BY
OF
A
6
5
4
32
1
SHEET
A
B
C
D
123456
D
C
B
Quectel Wireless Solutions
SIZE
VER
149
1.0
DATE
2019/12/5
EG21-G
A2
Reference Design
Handset Application
Earphone Application
Close to earphone interface
Notes:
Audio Interfaces
CTIA
OMTP
R0702/R0705
R0701/R0704
M
M
NM
NM
1. The analog output only drives earphone and headset. For larger power loads such as speakers, an audio power amplifier should be added in the design.
2. In handset application, both the MIC and SPK signal traces need to be routed as differential pairs.
3. In earphone application, the MIC signal traces need to be routed as differential pairs.
4. All MIC and SPK signal traces should be routed with total grounding and far away from noise such as clock and DC-DC signals, etc.
5. ALC5616 and TLV320AIC3104 cannot be used simultaneously in audio codec design.
4
1
3
2
J0701
D0701
ESD9X5.0ST5G
D0702
C0702
33pF
C0704
33pF
C0705
10pF
C0703
10pF
C0706
33pF
C0701
10pF
C0709
10pF
C0710
33pF
C0711
10pF
C0712
33pF
C0708
33pF
C0707
10pF
C0713
10pF
C0714
33pF
C0715
4.7μF
D0703
PESD5V0S1BL
D0704
R0703 0R
R-0805
1
2
3
4
5
J0702
C0716
10pF
C0717
33pF
D0705
ESD9X5.0ST5G
R0702
NM_0R
R0701
0R
R0704
0R
R0705
NM_0R
D0706
PESD5V0S1BL
C0718
10pF
C0719
33pF
D0707
PESD5V0S1BL
C0720
10pF
C0721
33pF
F0701
0R
F0702
0R
F0704
0R
F0703
0R
[7,8]
SPK_P
[7,8,9]
MIC_P
[7,8,9]
MIC_N
[7,8,9]
MIC_N
[7,8]
SPK_N
[7,8]
SPK_R
[7,8]
SPK_L
[7,8,9]
MIC_P
[7,8,9]
MIC_P
TITLE
PROJECT
Lorry XU
Woody WU
CHECKED BY
DRAWN BY
OF
A
6
5
4
32
1
SHEET
A
B
C
D
123456
D
C
B
Quectel Wireless Solutions
SIZE
VER
1410
1.0
DATE
2019/12/5
EG21-G
A2
Reference Design
RF and GNSS Designs
Main Antenna Circuit
Diversity Antenna Circuit
GNSS Antenna Circuit
Notes:
1. It is recommended to use PI type main/Rx-diversity antenna circuit, thus ensuring convenient subsequent debugging.
2. The diversity reception function is ON by default. If diversity antenna is not used, there is a need to use AT command to turn off diversity reception. For more details of the AT command, please refer to
3. If an active antenna is selected for the GNSS antenna, a VDD power supply circuit is required; if a passive antenna is selected, the power supply circuit does not needs to be mounted.
Active Antenna
4. The impedance of the RF signal traces must be controlled as 50Ω when routing.
Passive Antenna
The power supply VDD of GNSS needs to be selected according to the requirements of the active antenna.
Quectel_EG21-G_Hardware_Design.
C0801
NM
R0801
0R
J0801
C0802
NM
C0803
NM
R0802
0R
J0802
C0804
NM
L801
47nH
C805
0.1μF
R803
10R
C808
100pF
J804
C810
NM
C809
NM
R0805
0R
[3]
ANT_MAIN
[3]
ANT_DIV
[3]
ANT_GNSS
VDD
TITLE
PROJECT
Lorry XU
Woody WU
CHECKED BY
DRAWN BY
OF
A
6
5
4
32
1
SHEET
A
B
C
D
123456
D
C
B
Quectel Wireless Solutions
SIZE
VER
1411
1.0
DATE
2019/12/5
EG21-G
A2
Reference Design
To minimize crosstalk, the reset trace must be at least 20mil
R916 should be placed close to AR8033.
The traces of the resistor must be away from other
and the trace width needs to be at least 25mil.
EMI filter is reserved.
If LED pins are not used, please keep C0920/C0923/C0924=470pF.
SGMII_MDIO_DAT should be connected to the USIM2_VDD
MODE 2
MODE 1
MODE 0
MODE 3
Ethernet PHY Design
PHY_AD2
PHY_AD1
PHY_AD0
traces (especially the clock and MDI interface traces),
The two capacitors should be selected according to the actual
load capacitance of crystal and the board-level test results.
Close to AR8033
Notes:
1. In the following description, the SGMII data signal refers to the SGMII TX and RX differencial pair, and the SGMII control signal refers to the SGMII_MDIO_CLK, SGMII_MDIO_DATA, EPHY_RST_N and EPHY_INT_N.
3. Keep the maximum trace length of SGMII data signal less than 10 inches and keep the length difference between TX and RX signals less than 20mil.
4. The differential impedance of SGMII data signal is 100Ω±10%, and the reference ground of the area should be complete.
EXT_INT_SEL
5. Make sure the trace spacing between SGMII RX and TX signals is at least 3 times of the trace width, and is the same to the adjacent signal traces.
6. Module and AR8033 are recommended to be designed on the same PCB. The peripheral circuit layout of Ethernet PHY chip AR8033 should be designed on a
7. RJ45, network transformer, AR8033, and the SGMII interface should be placed as close as possible.
beside the module with a 1.5kΩ pull-up resistor.
away from other signal traces.
L0901, C0913 and C0914 need to be placed close to Pin 3.
2. SGMII data and control signals should be strictly surrounded with ground and kept away from RF, analog, clock and DC-DC signals etc.
four-layer PCB, and the second layer should be total grounded as the AR8033 reference GND.
1
MDC
2
RSTN
3
LX
4
VDD33
5
INT
6
XTLO
7
XTLI
8
AVDDL
9
RBIAS
10
VDDH_REG
11
TRXP0
12
TRXN0
13
AVDDL
14
TRXP1
15
TRXN1
16
AVDD33
17
TRXP2
18
TRXN2
19
AVDDL
20
TRXP3
21
TRXN3
22
NC
23
LED_ACT
24
LED_1000
25
CLK_25M
26
LED_10_100
27
RXD3
28
RXD2
29
VDDIO_REG
30
RXD1
31
RXD0
32
RX_DV
33
RX_CLK
34
TX_EN
35
GTX_CLK
36
TXD0
37
TXD1
38
TXD2
39
TXD3
40
WOL_INT
41
SD
42
SON
43
SOP
44
AVDDL
45
SIN
46
SIP
47
DVDDL
48
MDIO
49
GND
U901
AR8033-AL1B-R
R903
NM_100K
C910
NM_1μF
R916
2.37K 1%
R908
10K
R906
NM_10K
C921
0.1μF
C925
0.1μF
C926
0.1μF
C911
10μF
C927
1μF
C928
0.1μF
FB902
BLM15AX700SN1D
C922
1μF
C916
0.1μF
C915
100pF
1
XTAL
2
GND
3
XTAL
4
GND
Y901
25MHz
C917
10pF
C918
10pF
C924
NM/470pF
C923
NM/470pF
C919
NM
C920
NM/470pF
D901
GREEN
R915
510R
R901
0R
C908
0.1μF
C909
0.1μF
R904
0R
R907
0R
+
C904
100μF
C902
33pF
C901
10pF
C903
100nF
C912
0.1μF
FB901
BLM15AX700SN1D
R905
NM_10K
L901
4.7μH
C913
10μF
C914
0.1μF
C905
0.1μF
R914
10K
R909
10K
R913
10K
R910
10K
R911
10K
R912
10K
R917
10K
R918
10K
R902
1.5K
C906
2.2μF
C907
0.1μF
[3]
EPHY_RST_N
[3]
EPHY_INT_N
AVDD_1V1
[11]
VDD33_SGMII
[3]
SGMII_TX_M
[3]
SGMII_RX_P
[3]
SGMII_RX_M
[3]
SGMII_TX_P
[11]
VDD33_SGMII
[11]
VDDH_2V5
[12]
TRXP0
[12]
TRXN0
[12]
TRXP1
[12]
TRXN1
[12]
TRXP2
[12]
TRXN2
[12]
TRXP3
[12]
TRXN3
[12]
LED_ACT
[12]
LED_1000
[3]
SGMII_MDIO_DATA
[3]
SGMII_MDIO_CLK
[11]
VDD33_SGMII
CLK_25M
[11]
VDD33_SGMII
[5,13]
VDD3V3
[3,4,5,6,13,14]
VDD_EXT
[11]
VDDH_2V5
[11]
AVDD_1V1
[11]
DVDD_1V1
[11]
DVDD_1V1
[11]
AVDD_1V1
[11]
VDDH_2V5
[3]
USIM2_VDD
AVDD_1V1
[11]
AVDD_1V1
[11]
AVDD_1V1
/