Thermo Fisher Scientific IonPac CS12A Analytical Column and CG12A Guard Column User manual

Type
User manual
Errata
Product Manual for Dionex IonPac™ CS12A and CG12A Columns
031132-09
For new orders of the following parts discussed in this manual, please use the updated part
numbers listed below.
Part Old Part Number in
this manual Updated Part Number
to use for new orders
PROD,COL,IP,AG12A,4X50MM 046035 079801
PROD,COL,IP,CS12A,CAP,0.4X250MM 072066 079914
IonPac® CG12A
IonPac® CS12A
for
IonPac CS12A Manual Document No 031132-09 Page 1 of 75
PRODUCT MANUAL
for the
IONPAC® CG12A GUARD COLUMN
(8.5 μm, 2 x 50 mm, P/N 046076)
(5 μm, 3 x 30 mm, P/N 057184)
(8.5 μm, 4 x 50 mm, P/N 046074)
(5 μm, 0.4 x 35 mm, P/N 072069)
(8.5 μm, 0.4 x 50 mm, P/N 072067)
IONPAC® CS12A ANALYTICAL COLUMN
(8.5 μm, 2 x 250 mm, P/N 046075)
(5 μm, 3 x 150 mm, P/N 057185)
(8.5 μm, 4 x 250 mm, P/N 046073)
(8.5 μm 2 x 100 mm, P/N 059960)
(5 μm, 0.4 x 150 mm, P/N 072068)
(8.5 μm, 0.4 x 250 mm, P/N 072066)
© Dionex Corporation, 2010
Document No. 031132
Revision 09
May 2010
IonPac CS12A Manual Document No 031132-09 Page 2 of 75
TABLE OF CONTENTS
SECTION 1 - INTRODUCTION ....................................................................................................... 5
1.1 Important Considerations When Using the CS12A-MS (2 x 100 mm) Column ..................................................... 5
SECTION 2 - COMPARISON OF ION CHROMATOGRAPHY SYSTEMS ................................ 9
SECTION 3 - INSTALLATION ....................................................................................................... 11
3.1 System Requirements .............................................................................................................................................. 11
3.1.1 System Requirements for 0.4 mm Operation .............................................................................................................. 11
3.1.2 System Requirements for 4-mm Operation .................................................................................................................. 11
3.1.3 System Requirements for CS12A-5μm 3-mm Operation ............................................................................................ 11
3.1.4 System Requirements for 2-mm Operation ................................................................................................................ 11
3.1.5 System Void Volume .................................................................................................................................................. 11
3.1.6 Installation of the Capillary Column .......................................................................................................................... 12
3.2 Installing the CR-CTC Trap Column for Use with EGC II MSA Cartridge .......................................................... 16
3.3 Installing the Cation Trap Column for Eluent Step Change or Gradient Operation ............................................ 16
3.4 The Injection Loop ................................................................................................................................................... 17
3.5 Sample Concentration ............................................................................................................................................. 17
3.6 IonPac CG12A Guard Columns .............................................................................................................................. 18
3.7 Eluent Storage ......................................................................................................................................................... 18
3.8 Cation Self-Regenerating Suppressor & Cation Capillary Electrolytic Suppressor Requirements .................. 18
3.8.1 IC-MS Current Settings for the CSRS 300 ................................................................................................................. 18
3.9 Cation Atlas Electrolytic Suppressor Requirements ............................................................................................ 18
3.10 Cation MicroMembrane Suppressor Requirements .............................................................................................. 18
3.11 Using AutoRegen .................................................................................................................................................... 19
3.12 Detector Requirements ........................................................................................................................................... 19
SECTION 4 - OPERATION ............................................................................................................. 20
4.1 General Operating Conditions ............................................................................................................................... 20
4.2 Operating Precautions ........................................................................................................................................... 20
4.3 Chemical Purity Requirements .............................................................................................................................. 20
4.3.1 Deionized Water ........................................................................................................................................................ 20
4.3.2 Inorganic Chemicals .................................................................................................................................................. 21
4.4 Preparation of Eluent Stock Solution Concentrates .............................................................................................. 21
4.4.1 1.0 N Sulfuric Acid Stock Solution ........................................................................................................................... 21
4.4.2 1.0 N Methanesulfonic Acid (MSA) Stock Solution ................................................................................................. 21
4.5 Eluent Preparation .................................................................................................................................................. 22
4.6 Eluents with Solvents .............................................................................................................................................. 22
4.6.1 Making and Using Eluents that Contain Solvents .................................................................................................... 23
IonPac CS12A Manual Document No 031132-09 Page 3 of 75
SECTION 5 - EXAMPLE APPLICATIONS .................................................................................... 24
5.1 Production Test Chromatogram ............................................................................................................................. 25
5.1.1 IonPac CS12A and CS12A-5μm Capillary Column Production Test Chromatogram ..................................................... 26
5.1.2 IonPac CS12A-MS Production Test Chromatogram .................................................................................................. 28
5.2 Fast Separation of the Six Common Cations Using the IonPac Capillary Column ............................................... 29
5.3 Isocratic Separation of the Six Common Cations using an IonPac Capillary Column ......................................... 30
5.4 6-Cation Fast Run (Li+, Na+, NH4+, K+, Mg2+, Ca2+) .......................................................................................... 31
5.5 Trace Cations by Direct Injection ........................................................................................................................... 32
5.6 Isocratic Elution of Ammonium, Alkali Metals and Alkaline Earth Metals .......................................................... 33
5.7 Fast Elution of Ammonium, Alkali Metals and Alkaline Earth Metals with the CS12A-5μm 3-mm ................... 34
5.8 Isocratic Elution of 6 Cations plus Morpholine ..................................................................................................... 35
5.9 Isocratic Elution of 6 Cations plus Manganese with the CS12A-5μm 3-mm ....................................................... 36
5.10 Comparison of Sulfuric Acid and Methanesulfonic Acid Eluents ......................................................................... 37
5.11 1000:1 Ratio Sodium to Ammonium ....................................................................................................................... 38
5.12 Comparison of Amine Selectivity at Different Temperatures Using Gradient Elution ......................................... 39
5.13 Separation of Alkyl Amines at Elevated Temperature Using Gradient Elution ..................................................... 40
5.14 Separation of Aliphatic Quaternary Amines Using Gradient Elution ................................................................... 41
5.15 Separation of Alkyl Diamines at Elevated Temperature Using Gradient Elution ................................................. 42
5.16 Sample pH ................................................................................................................................................................ 43
5.17 Separation of Cyclohexylamine, Morpholine and Diethylaminoethanol at Different Temperatures
Using Step Elution ................................................................................................................................................. 45
5.18 Separation of Arenes at Two Different Temperatures Using Gradient Elution .................................................... 46
5.19 Separation of Anilines at Two Different Temperatures Using Gradient Elution .................................................. 47
5.20 Separation of Pyridines at Two Different Temperatures Using Gradient Elution ................................................ 48
5.21 Separation of Benzylamines and Amides at Two Different Temperatures Using Gradient Elution ..................... 49
5.22 Separation of Matrix Ions from Analytes in IC-MS: 900 ppb Ephedrines in 130 ppm NaCl ................................ 50
5.23 Detection of Small Amines Using IC-MS ............................................................................................................... 51
5.24 Comparison of Conductivity and Electrospray-MS Detection of 50 ppb Triethylamine ....................................... 52
5.25 Identification of Cations in Biaxin Extract by IC-MS ............................................................................................. 53
5.26 Guanidine by IC-MS ................................................................................................................................................ 54
5.27 General Cation Gradient Screening of Histenol-Forte .......................................................................................... 55
5.28 IC-MS of an Antiseptic Swab .................................................................................................................................. 56
IonPac CS12A Manual Document No 031132-09 Page 4 of 75
SECTION 6 - TROUBLESHOOTING GUIDE ............................................................................... 57
6.1 High Back Pressure ............................................................................................................................................... 58
6.1.1 Finding the Source of High System Pressure ............................................................................................................ 58
6.1.2 Replacing Column Bed Support Assemblies ............................................................................................................. 59
6.2 Preparation of Eluents ............................................................................................................................................ 60
6.3 Contamination ......................................................................................................................................................... 60
6.3.1 A Contaminated Guard or Analytical Column ........................................................................................................... 60
6.3.2 Sample Loop and/or Tubing Contamination ............................................................................................................. 60
6.4 High Background or Noise ..................................................................................................................................... 61
6.5 Suppressor Not Suppressing Properly .................................................................................................................. 62
6.6 Poor Peak Resolution ............................................................................................................................................. 63
6.6.1 Loss of Peak Efficiency Throughout the Chromatogram .......................................................................................... 63
6.6.2 Loss of Resolution Throughout the Chromatogram Due to Shortened Retention Times ......................................... 63
6.6.3 Loss of Early Eluting Peak Resolution ...................................................................................................................... 64
6.7 Spurious Peaks ....................................................................................................................................................... 64
6.8 Poor Efficiency Using Capillary Column ............................................................................................................... 65
APPENDIX A - QUALITY ASSURANCE REPORT ....................................................................... 66
APPENDIX B - COLUMN CARE .................................................................................................. 73
Recommended Operating Pressures ................................................................................................................................ 73
Column Start-Up ................................................................................................................................................................ 73
Column Storage ................................................................................................................................................................. 73
Column Conditioning ......................................................................................................................................................... 73
Column Cleanup ................................................................................................................................................................ 73
Column Cleanup Procedure for Polyvalent Cations and Acid-Soluble Contaminants or Transition Metals ........................ 74
Hydrophobic Cations and Organic Contaminants ............................................................................................................... 74
IonPac CS12A Manual Document No 031132-09 Page 5 of 75
SECTION 1 - INTRODUCTION
The IonPac® CS12A 4 x 250 mm (P/N 046073), CS12A-5μm 3-mm 3 x 150 mm (P/N 057185), CS12A 2 x 250 mm (P/N 046075) Analytical
Columns and CS12A 0.4 x 250 mm (P/N 072066) Capillary Column are designed specifically for the analysis of alkali metals, alkaline
earth metals, and ammonium. The CS12A, CS12A-MS and CG12A stationary phase is functionalized with relatively weak phosphonic
and carboxylic acids having a high selectivity for hydronium ion. The weak carboxylate functional groups require low ionic strength
eluents to isocratically elute both monovalent and divalent cations in a relatively short period of time. It has both cation exchange
and reverse phase properties. The CS12A and CS12A-MS are solvent-compatible with 100% aqueous eluents, 100% acetonitrile,
or 20% tetrahydrofuran without loss of performance.
The IonPac® CS12A-5μm 3 x 150-mm (P/N 057185) Analytical Column and CS12A - 5μm 0.4 x 150 mm (P/N 072068) Capillary Column
are designed specifically for the fast analysis of alkali metals, alkaline earth metals, and ammonium. They use the same functional
groups (carboxylate and phosphonate) as the standard CS12A 4-mm. They differ in both the column format and the resin particle
size. The smaller resin size of the CS12A-5μm, together with optimized packing conditions, results in high peak efficiencies in spite
of the fact that the CS12A-5μm column is shorter than the standard CS12A column. The smaller column internal diameter requires
half the flow rates of the standard 4-mm column, thus decreasing eluent consumption and eluent disposal. Minimum detection levels
are improved by a factor of about 2.5. The shorter length together with the smaller id allows for faster analysis of the common cations.
Thus, the advantages of the CS12A-5μm column are:
Fast analysis of the group I and the group II cations plus ammonium ion.
Low eluent consumption.
Improved minimum detection limits.
The disadvantages are that the column has about 1/3 the column cation exchange capacity as the CS12A 4-mm, and will therefore
be not as tolerable as the CS12A with respect to sample pH. While the CS12A 4-mm can determine samples containing up to
50 mM H+ when a 25 μL sample loop is used, the CS12A-5μm 3-mm column can only tolerate up to 20 mM H+. To overcome
this limitation either a smaller sample loop or the OnGuard II A cartridge can be used to treat the sample making it possible for
the CS12A-5μm 3-mm to analyze samples with up to 50 mM H+ concentration. Due to its lower capacity, the CS12A-5μm 3-
mm will also overload sooner than the CS12A 4-mm when high concentration samples are injected. Thus, for a given sample
loop and for samples containing diverse concentration ratios, the 5-μm 3-mm column is inferior to the 4-mm.
The CS12A-5μm 3-mm column can be used with either a standard or narrow bore pump (2-mm or 4-mm eluent pump), but the
system’s plumbing should be optimized to minimize band dispersion. Plumbing should be done with 5/1000 ID PEEK tubing
(red) minimizing the lengths of it and making sure the tubing is cut with a flat (and not slanted) edge. A CSRS 300 2-mm suppressor
should be used instead of a 4-mm for the same reasons. Using a 4-mm CSRS 300 will decrease the peaks’ efficiencies by at least
1000 plates for monovalent cations. In order to minimize noise, the CSRS 300 2-mm should be used in the lowest current setting
required to suppress the eluent.
Most of the CS12A-5μm applications shown in this manual have been run at 30 °C. If you do not have an oven to do this, you can
still run the same applications at room temperature. Peak efficiencies will be slightly lower. Selectivity can sometimes be different
when the column is run at room temperature vs at 30 °C. For example, resolution of magnesium and manganese will actually be poor
at 30 °C but baseline resolved at room temperature.
Chromatographic methods developed for CS12A applications, such as amine applications, should be applicable also to the CS12A-
5μm columns, with just the one change in eluent flow rate; while the CS12A is usually run at 1.0 mL/min, the CS12A-5μm 3-mm should
be run at 0.5 mL/min.
1.1 Important Considerations When Using the CS12A-MS (2 x 100 mm) Column
The IonPac CS12A-MS column is an IC-MS screening column packed with the same CS12A (8.5 μm) resin in a 2-mm I.D. x
100-mm length format, ideally suited for fast elution and low flow rates required for interfacing with IC-MS detectors. Typically,
the CS12A-MS column will be operated in an ion chromatography system containing a post column cation eluent suppressor for
eluent suppression and removal of salt counter anions, followed by a conductivity detector and ESI-MS detector in series. When
an eluent suppressor is used after the analytical column in electrospray IC-MS, standard IC nonvolatile ionic eluent components
can be used. The electrolytic suppressor (CSRS 300) lowers the ionic strength of the effluent entering the ESI interface, producing
IonPac CS12A Manual Document No 031132-09 Page 6 of 75
a more stable signal and improving sensitivity by eliminating ionization suppression of the analyte by eluent ions. The system can
also be operated without a suppressor by using formic acid and ammonium acetate as the mobile phase. The advantage of operating
without a suppressor is that an MS signal can be obtained for both anions and cations since the anions will not be removed by
the suppressor.
A typical IC system for IC-MS consists of a 2-mm suppressed IC system such as a ICS-5000 with a conductivity detector. A
ground union is installed between the conductivity cell and the chassis to eliminate voltage buildup between the two detectors.
The use of microbore (2-mm) components is recommended because the sensitivity and ease-of-use are better at the lower flow
rates with the electrospray interface.
The use of a suppressor in IC-MS provides several advantages. Methods developed for conductivity detection conditions can
be used without modification. The counterions are removed, reducing MS system maintenance. The electrospray signal is
considerably more stable when the ionic load entering the interface is lowered, even in comparison to volatile eluent systems.
Detection limits are improved due to increased signal stability and the elimination of ionization suppression. The availability
of a high sensitivity conductivity trace provides useful identification information.
One advantage to operating without a suppressor is that it is possible to obtain a MS signal for both anions and cations because
neither is removed in the suppressor. However, the absence of the CSRS suppression leads to a more erratic signal and
increased signal suppression. A useful mobile phase is formic acid and ammonium acetate for cation applications.
The schematic below shows the components in an IC/MS System.
Slide 16159
Figure 1
IC/MS System Schematic
Pump MSQ MS
Detector Union
Column
waste
water
System Schematic
(addition of solvent/acid base)
Suppressor
valve
GroundedConductivity
Optional pump
Injection
external
DO NOT USE ALCOHOLS IN THE ELUENT
Formation of esters will occur in the column packing. This can significantly reduce the
column capacity for cation exchange.
CAUTION
IonPac CS12A Manual Document No 031132-09 Page 7 of 75
Table 1
IonPac CS12A/CG12A Packing Specifications
Column Particle SubstrateaColumn Functional Hydrophobicity
Diameter X-linking Capacity Group
μm % meq/column
CS12A 8.5 55 2.8 Carboxylic/ Med-low
4 x 250 mm Phosphonic acid
CG12A 8.5 55 0.56 Carboxylic/ Med-low
4 x 50 mm Phosphonic acid
CS12A-5μm 5.5 55 0.94 Carboxylic/ Med-low
3 x 150 mm Phosphonic acid
CG12A-5μm 5.5 55 0.19 Carboxylic/ Med-low
3 x 30 mm Phosphonic acid
CS12A 8.5 55 0.7 Carboxylic/ Med-low
2 x 250 mm Phosphonic acid
CG12A 8.5 55 0.14 Carboxylic/ Med-low
2 x 50 mm Phosphonic acid
CS12A-MS 8.5 55 0.28 Carboxylic/ Med-low
2 x 100 Phosphonic acid
CS12A 8.5 55 0.028 Carboxylic/ Med-low
0.4 x 250 mm Phosphonic acid
CG12A 8.5 55 0.0056 Carboxylic/ Med-low
0.4 x 50 mm Phosphonic acid
CS12A - 5μm 5.5 55 0.0094 Carboxylic/ Med-low
0.4 x 150 mm Phosphonic acid
CS12A - 5μm 5.5 55 0.0019 Carboxylic/ Med-low
0.4 x 35 mm Phosphonic acid
a macroporous (100 Å) divinylbenzene/ethylvinylbenzene polymer
IonPac CS12A Manual Document No 031132-09 Page 8 of 75
Table 2
CS12A/CG12A Operating Parameters
At standard flow rate, Standard Maximum
Column Typical Back Pressure Flow Rate Flow Rate
psi (MPa) mL/min mL/min
CS12A 4-mm Analytical < 1,200 (8.27) 1.0 2.0
CG12A 4-mm Guard < 450 (3.10) 1.0 3.0
CS12A + CG12A 4-mm columns < 1,650 (11.37) 1.0 2.0
CS12A-5μm 3-mm Analytical < 1,760 (12.13)* 0.5 1.0
CG12A-5μm 3-mm Guard < 605 (4.17)* 0.5 1.0
CS12A + CG12A-5μm 3-mm columns < 2,365 (17.30)* 0.5 1.0
CS12A 2-mm Analytical < 1,200 (8.27) 0.25 0.5
CG12A 2-mm Guard < 450 (3.10) 0.25 0.75
CS12A + CG12A 2-mm columns < 1,650 (11.37) 0.25 0.5
CS12A 0.4 mm Capillary < 1,320 (9.10) 0.01 0.020
CG12A 0.4 mm Capillary Guard < 495 (3.41) 0.01 0.020
CS12A + CG12A 0.4 mm columns < 1,815 (12.51) 0.01 0.020
CS12A-5μm 0.4 mm Capillary < 1,760 (12.13)* 0.008 0.02
CG12A-5μm 0.4 mm Capillary Guard < 605 (4.17)* 0.008 0.02
CG12A-5μm 0.4 mm columns < 2,365 (17.30)* 0.008 0.02
CS12A-MS (2 x 100 mm) Analytical < 800 (5.51 ) 0.25 0.75
* at 30 °C
Even though the end fittings for the CS12A 4-mm and 3-mm are the same, notice that the bed support
is NOT.
If you need to replace the bed support in the CS12A-5μm 3-mm, make sure you use the correct one.
The i.d. of the 3-mm frit is smaller than the one used in the 4-mm format.
Read the system manuals. This manual assumes that you are familiar with the installation and operation of the Dionex Ion
Chromatograph (IC). If you do not understand the operation of the system, take the time to familiarize yourself with the various
system components before beginning an analysis.
You may need to make a liquid line fitting. The IonPac CS12A Analytical Column and the IonPac CG12A Guard Column have
10-32 PEEK end fittings for use with ferrule/bolt liquid line fittings. If you have an Ion Chromatograph with Tefzel® liquid lines
having 1/4-28 ThermoFlare fittings, it will be necessary to obtain one or more Tefzel liquid lines with a PEEK bolt and ferrule
fitting on one end and a 1/4-28 ThermoFlare fitting on the other end. See, “Dionex Liquid Line Fittings,” for detailed instructions
on purchasing or making these lines.
Always remember that assistance is available for any problem that may be encountered during the shipment or
operation of Dionex instrumentation and columns through the Dionex North America Technical Call Center at
1-800-DIONEX-0 (1-800-346-6390) or through any of the Dionex Offices listed in, “Dionex Worldwide Offices.”
NOTE
IonPac CS12A Manual Document No 031132-09 Page 9 of 75
SECTION 2 - COMPARISON OF ION CHROMATOGRAPHY SYSTEMS
The proper configuration of 2-mm system injection volume, mass loading, system void volume and flow rate is based on
the ratio of the 2-mm to 4-mm column cross-sectional area which is a factor of 1:4. The ratio of the 3-mm to 4-mm column
cross-sectional area is a factor of 1:1.8.
Condition 2-mm 3-mm 4-mm 0.4
-
mm
Eluent Flow Rate 0.25 mL/min 0.5 mL/min 1.0 mL/min 0.010 mL/min
Injection Loop 2 – 15 µL
Use the Rheodyne
Microi njection Valve,
Model No. 91 26
DIONEX P/N 044697)
for full loop injections <
15 µL.
5 25 µL 1050 µL 0.4 µL (typical)
Suppressors CSRS 300 (2-mm)
(P/N 064557)
CMMS 300 (2-mm)
(P/N 064561)
CAES ®
(P/N 056118)
CSRS 300 (2-mm)
(P/N 064557)
CMM S 300 (2-mm)
(P/N 064561)
CAES ®
(P/N 056118)
CSRS 300 (4-mm)
(P/N 064556)
CMMS 300 (4-mm)
(P/N 064560)
CAES ®
(P/N 056118)
CCES 300
(P/N 072053)
System Void Volume Eliminate switching
valves, coupler and the
GM-3 Gradient Mixer.
Use only the Microbore
GM-4 (2-mm) Mixer (P/N
049135).
Eliminate switching
valves, coupler and the
GM-3 Gradient Mixer.
Use only the Microbore
GM-4 (2-mm) Mixer (P/N
049135).
Minimize dead volumes.
Switc hing valves,
couplers can be used.
Use the GM-2, GM-3 or
rec ommended gradient
mixers.
Use only on an IC System
equipped for Capillary
Analysis.
Pumps Use the
GS50/GP50/GP40/IP20 in
Microbore Configuration
with a Microbore GM-4
(2-mm) Gradient Mixer.
No External Gradient
Mixer i s requ ired for
GS50/GP50/GP40 Pump
when performi ng gradient
analysis.
The GPM-2 can be used
for 2-mm isocratic
chromatography at flow
rates of 0.5 mL/min or
greater but cannot be used
for 2-mm gradient
chromatography.
NOTE: Use of an EG40
(P/N 053920) or EG50
(P/N 060585) with an
EGC II MSA cartridge
(P/N 053922) for gradient
applications is highly
recommended for
minimum baseline change
when performing eluent
step changes or gradients.
Use the
GS50/GP50/GP40/IP20 in
Microbore or Standard
Configuration with a
Microbore GM-4 (2-mm)
Gradient Mixer.
No External Gradient
Mixer is required for
GS50/GP50/Gp40 pump
when performing gradient
analysis.
The GPM-2 can be used
for 2-mm isocratic
chromatography at flow
rates of 0.5 mL/min or
greater but cannot be used
for 2-mm gradient
chromatography.
NOTE: Use of an EG40
(P/N 053920) or EG50
(P/N 060585) with an
EGC II MSA cartridge
(P/N 053922) for gradient
applications is highly
recommended for
mini mum bas eline change
when performing eluent
step changes or gradients.
Use the
GP40/GP50/IP20/IP25 in
Standard-Bore
Configurations.
The GM-3 Gradient
Mixer should be used for
gradient analysis on
systems other than the
GP40/GP50/IP20/IP25
and the DX-300 HPLC
Pump.
NOTE: Use of an EG40
(P/N 053920) or EG50
(P/N 060585) with an
EGC II MSA cartridge
(P/N 053922) for gradient
applications is highly
recommended for
mini mum baselin e chan ge
when performing eluent
step changes or gradients.
Use only a pump designed
for Capillary flow rates
such as the ICS-5000
Capillary pump.
Do not run suppressors over 40 °C. If you have an application that requires higher temperatures, place the
suppressor outside the oven.
NOTE
IonPac CS12A Manual Document No 031132-09 Page 10 of 75
Condition 2-mm 3-mm 4-mm 0.4-mm
Chromatographic
Module
A thermally controlled
column oven such as the
LC25, LC30, ICS-10, 11,
15, 16, 20, 2100, 3000,
5000 DC
A thermally controlled
column oven such as the
LC25, LC30, ICS-10, 11,
15, 16, 20, 2100, 3000,
5000 DC
A thermally controlled
column oven such as the
LC25, LC30, ICS-10, 11,
15, 16, 20, 2100, 3000,
5000 DC
A thermally controlled
column compartment such
as the ICS-5000 DC or
IC-Cube.
Detectors AD20/AD25 Cell
(6-mm, 7.5 µL, P/N
046423)
VDM-2 Cell
(3-mm, 2.0 µL, P/N
043120)
CD20, CD25, ED40 or
ED50 Conductivity Cell
with DS3 P/N 044130 or
Conductivity Cell with
shield P/N 044132
CDM-2/CDM-3 Cell
P/N 042770
Replace the TS-1 with the
TS-2 (P/N 043117) on the
CDM-2 or the CDM-3.
The TS-2 has been
optimized for 2-mm
operation. Do not use the
TS-2 or the TS-1 with the
ED40/ED50 or the
CD20/CD25.
Ensure 30 – 40 psi back
pressure after the cell.
AD20/AD25 Cell
(6-mm, 7.5 µL, P/N
046423) or an
AD20/AD25 cell (10-mm,
9 µL) P/N 049393
VDM-2 Cell (3-mm,
2.0 µL, P/N 043120) or
VDM-2 cell (6-mm,
10 µL) P/N 043113
CD20, CD25, ED40 or
ED50 Conductivity Cell
with DS3 P/N 044130 or
Conductivity Cell with
shield P/N 044132
CDM-2/CDM-3 Cell
P/N 042770
Replace the TS-1 with the
TS-2 (P/N 043117) on the
CDM-2 or the CDM-3.
The TS-2 has been
optimized for 2-mm
operation. Do not use the
TS-2 or the TS-1 with the
ED40/ED50 or the
CD20/CD25.
Ensure 30 – 40 psi back
pressure after the cell.
AD20/AD25 Cell
(10-mm, 9 µL P/N
049393)
VDM-2 Cell (6-mm,
10 µL) P/N 043113
CD20, CD25, ED40 or
ED50 Conductivity Cell
with DS3 P/N 044130 or
with shield P/N 044132
CDM-2/CDM-3 Cell
P/N 042770
Either the TS-1 with the
TS-2 can be used with the
CDM-2 or the CDM-3.
Do not use the TS-2 or the
TS- 1 with the
ED40/ED50 or the
CD20/CD25.
Ensure 30 – 40 psi back
pressure after the cell.
Use only a Conductivity
de te ctor desi gned for
Capillary flow rates such
as the ICS-5000 Capillary
CD
Color Dionex P/N I.D. inch I.D. cm Volume
mL/ft
Back
Pressure
Psi/ft. at 1
mL/min
Back
Pressure
Psi/ft. at 0.25
mL/min
Back
Pressure
Psi/cm. at 1
mL/min
Green 044777 0.030 0.076 0.137 0.086 0.021 0.003
Orange 042855 0.020 0.051 0.061 0.435 0.109 0.015
Blue 049714 0.013 0.033 0.026 2.437 0.609 0.081
Black 042690 0.010 0.025 0.015 6.960 1.740 0.232
Red 044221 0.005 0.013 0.004 111.360 27.840 3.712
Yellow 049715 0.003 0.008 0.001 859.259 214.815 28.642
Table 3
Tubing Back Pressures
IonPac CS12A Manual Document No 031132-09 Page 11 of 75
SECTION 3 - INSTALLATION
3.1 System Requirements
3.1.1 System Requirements for 0.4 mm Operation
The IonPac CS12A and CS12A - 5µm 0.4 mm Capillary Guard and Capillary Columns are designed to be run on a Capillary Ion
Chromatograph equipped with Suppressed Conductivity detection. It is recommended to run the Capillary Column only on the
ICS-5000 Capillary System for best performance.
3.1.2 System Requirements for 4-mm Operation
The IonPac CS12A 4-mm Guard and Analytical Columns are designed to be run on any Dionex Ion Chromatograph equipped with
suppressed conductivity detection. Gradient or isocratic methods should be performed on a system having a gradient pump
configured for standard bore operation.
3.1.3 System Requirements for CS12A-5μm 3-mm Operation
The IonPac CS12A-5µm 3-mm Guard and Analytical Columns are designed to be run on any Dionex Ion Chromatograph equipped
with suppressed conductivity detection. Gradient or isocratic methods should be performed on a system having either a standard
or a narrow bore pumps (4-mm or 2-mm), as most applications are run at 0.5 mL/min.
3.1.4 System Requirements for 2-mm Operation
The IonPac CS12A 2-mm Guard and Analytical Columns are designed to be run on any Dionex Ion Chromatograph equipped with
suppressed conductivity detection. Gradient or isocratic methods should be performed on a gradient pump configured for narrow
bore operation.
3.1.5 System Void Volume
When using 2-mm and CS12A-5µm 3-mm columns, it is particularly important to minimize system void volume. The system void
volume should be scaled down to at least 1/4 of the system volume in a standard 4-mm system. For best performance, all of the
tubing installed between the injection valve and detector should be 0.005" (P/N 044221) ID PEEK tubing. 0.010" ID PEEK tubing
(P/N 042260) or 0.012" Tefzel tubing (see “Dionex Product Selection Guide”) may be used but peak efficiency will be compromised
which may also result in decreased peak resolution. Minimize the lengths of all connecting tubing and remove all unnecessary
switching valves and couplers. Make sure all tubing is cut in a straight (not slanted) manner. If you need assistance in properly
configuring your system contact the Dionex North America Technical Call Center at 1-800-DIONEX-0 (1-800-346-6390) or the nearest
Dionex Office (see, “Dionex Worldwide Offices”)
IonPac CS12A Manual Document No 031132-09 Page 12 of 75
3.1.6 Installation of the Capillary Column
Before installing the new separator column, tear off the column label and slide it into the holder on the front of the cartridge
(see Figure 2).
For reference, Figure 2 shows the column cartridge after installation of both a capillary guard column and a capillary
separator column. Figure 3 shows the column cartridge after installation of only a capillary separator column.Before installing
the new separator column, tear off the column label and slide it into the holder on the front of the cartridge (see Figure 2).
For reference, Figure 2 shows the column cartridge after installation of both a capillary guard column and a capillary
separator column. Figure 3 shows the column cartridge after installation of only a capillary separator column.
Figure 2
Separator and Guard Columns Installed in Column Cartridge
Figure 3
Separator Column Only Installed in Column Cartridge
IonPac CS12A Manual Document No 031132-09 Page 13 of 75
1. Locate the IC Cube Tubing Kit (P/N 072186) that is shipped with the IC Cube. The tubing kit includes the following items:
Table 4
Contents of the IC Cube Tubing Kit (P/N 072186)
Part Length /
Quantity
Part
Number
Used To Connect
Precision cut 0.062-mm
(0.0025-in) ID PEEK tubing,
blue
65 mm
(2.56 in)
072188 50 mm guard column
outlet to 250 mm
separ ator column
inlet
Precision cut 0.062-mm
(0.0025-in) ID PEEK tubing,
blue, labeled
VALVE PORT 3
115 mm
(4.53 in)
072189 Guard column inlet to
injection valve
Precision cut 0.062-mm
(0.0025-in) ID PEEK
tubing, blue
75 mm
(2.93 in)
074603 35 mm guard column
outlet to 150 mm
separ ator column
inlet
Precision cut 0.062-mm
(0.0025-in) ID PEEK
tubing, blue, labeled
VALVE PORT 3
210 mm
(8.27 in)
072187 Separator column
inlet to injection valve
(if a guard column is
not present)
0.25-mm (0.010-in) ID
PEEK tubing, black
610 mm
(24 in)
042690 EG degas cartridge
REGEN OUT to
waste (if an EG is not
present)
Fitting bolt, 10-32 hex
double-cone (smaller),
black
3 072949 Connect precision
cut 0.062-mm
(0.0025-in) ID PEEK
tubing
Fitting bolt, 10-32
double-cone (larger),
black
1 043275 Connect 0.25-mm
(0.010-in) ID PEEK
tubing (black)
Ferrule fitting, 10-32
double-cone, tan
4 043276 Use with both sizes
of fitting bolts
IonPac CS12A Manual Document No 031132-09 Page 14 of 75
2. Refer to the following figures for the precision cut tubing required for your configuration:
250 mm Separator Column
65 mm (2.56 in)
Precision Cut Tubing
(P/N 072188)
50 mm Guard Column
115 mm (4.53 in)
Precision Cut Tubing
(P/N 072189)
1
2
3
4
1
2
3
4
Figure 4
Tubing Connections for 250-mm Separator Column and 50-mm Guard Column
Separator Column
210 mm (4.5 in)
Precision Cut Tubing
(P/N 072187)
(use with any length
seperator column)
1
2
1
2
Figure 5
Tubing Connections for Separator Column Only
IonPac CS12A Manual Document No 031132-09 Page 15 of 75
3. Lift up the lid of the column cartridge to open it.
4. Remove the fitting plug from the outlet fitting on the separator column. Orient the fitting with a flat side up (see Figure 6)
and push the fitting into the opening at the front of the column cartridge until it stops.
Figure 6
Column Outlet Fitting Installed in Column Cartridge
5. Coil the separator column tubing inside the cartridge as shown in Figure 2 or Figure 3. Secure the column tubing and the
inlet fitting in the clips on the column cartridge.
6. Secure the inlet and outlet fittings on the guard column (if used) in the column clips on the lid of the column cartridge.
7. Route the guard column inlet tubing (if used) or the separator column inlet tubing through the clip on the top edge of the
column cartridge lid.
8. Close the lid (you should hear a click) and route the tubing into the slot on the front of the column cartridge (see Figure 7).
NOTE
!
If the columns are installed correctly, the cartridge lid snaps closed easily. If the lid does not close easily, do not
force it. Open the lid and verify that the columns and tubing are installed correctly and secured in the clips.
Separator Column Outlet
Column Inlet Tubing
1
2
1
2
Figure 7
Column Cartridge Closed
IonPac CS12A Manual Document No 031132-09 Page 16 of 75
3.2 Installing the CR-CTC Trap Column for Use with EGC MSA Cartridge
For IonPac CS12A applications using the EGC MSA cartridge, a CR-CTC Continuously Regenerated Trap Column (P/N 066262 or
072079) should be installed at the EGC eluent outlet to remove trace level cationic contaminants such as ammonium from the carrier
deionized water. See the CR-TC Product Manual (Document No. 031910) for instructions. As an alternative, the CTC-1 Trap Column
(P/N 040192) can be used. The CTC-1 Trap Column will require off-line regeneration. To use the CTC Cation Trap Column, see Section
3.3.
3.3 Installing the Cation Trap Column for Eluent Step Change or Gradient Operation
An IonPac Cation Trap Column (CTC (2-mm), P/N 043132 or CTC-1 (4-mm), P/N 040192) should be installed between the Gradient
Pump and the injection valve. Remove the high pressure Gradient Mixer if present. The CTC is filled with high capacity cation
exchange resin which helps to minimize the baseline shift caused by increasing cationic contaminant levels in the eluent as the ionic
concentration of the eluent is increased over the course of the gradient analysis.
The CS12A-5µm 3-mm can be used with either CTC column.
To install the CTC (2-mm) or CTC-1 (4-mm), complete the following steps:
A. Remove the Gradient Mixer. It is installed between the gradient pump pressure transducer and the injection valve.
B. Connect the gradient pump directly to the CTC. Connect a waste line to the CTC outlet and direct the line to a waste
container.
C. Flush the CTC. Use 200 mL of a 10X eluent concentrate of the strongest eluent required by the application at a flow rate
of 2.0 mL/min. Note that with the guard and analytical columns out of line, there is no need for 2-mm flow rate restrictions.
D. Rinse the CTC with the strongest eluent that will be used during the gradient analysis.
E. Reconnect the CTC. Connect the CTC to the eluent line that is connected to the injection valve.
The background conductivity of your system should be less than 3 µS when 10 mN H2SO4 or methanesulfonic acid (MSA) is being
pumped through the chromatographic system with the CSRS in-line and properly functioning. The baseline shift should be no greater
than 1 µS during a gradient concentration ramp from 10 to 40 mM methanesulfonic acid (MSA). If the baseline shifts are greater
than 5 µS, the CTC should be cleaned using steps A - E above.
Flush the CTC at the end of each operating day. This removes any impurities that may have accumulated on it. This will minimize
periodic maintenance and lost data.
A. Disconnect the CTC from the injection valve.
B. Direct the outlet of the CTC to a separate waste container.
C. Flush the CTC. Use 30 mL of a 10X eluent concentrate of the strongest eluent required by the application at a flow rate
of 2.0 mL/min.
D. Flush the CTC prior to start-up. Prior to the use of the chromatographic system on the next day, flush the CTC with
30 mL of the strongest eluent used in the gradient program.
IonPac CS12A Manual Document No 031132-09 Page 17 of 75
3.4 The Injection Loop
The injection loop can vary from 0.4 µL to about 1000 µL, depending on the sample concentration and the cation exchange capacity
of the column. Using very large sample loops result in a slight drop of peak efficiencies, but this could be offset by the gain in
sensitivity. It is much easier to use a large sample loop injection than to do sample preconcentration, as besides requiring the extra
hardware, the latter could be subject to contamination from external sources such as the preconcentration pump.
In cases where the samples’ cation concentrations are high (or the column’s capacity is low), it is better to use a smaller sample
loop than to dilute the sample, as once again, the diluting water and vessels used could potentially contaminate the sample.
The CS12A-5µm 3-mm column has about 1/3 the capacity of the CS12A 4-mm, so overloading of the column will occur at lower
concentrations for the same injection loop volume.
For most applications on a CS12A analytical column, a 10 to 50 µL injection loop will be sufficient. Generally, do not inject more
than 50 - 100 nanomoles of any one analyte onto the analytical column. Injecting larger amounts than this can result in overloading
of the column which affects linearity as well as peak efficiency and asymmetry. This phenomenon will be more prevalent at higher
concentrations of the analytes of interest, and especially so in the lower capacity analytical columns.
For most applications on a 0.4 mm Capillary System, a 0.4 µL injection loop is sufficient. Generally you should not inject more than
0.5 nanomoles total cation concentration onto the 0.4 mm Capillary Column. Injecting larger number of moles of a sample can result
in overloading the column which can affect detection linearity. For low concentrations of analytes, larger injection loops can be
used to increase sensitivity.
3.5 Sample Concentration
The IonPac CG12A Guard Column or the Low-Pressure Trace Cation Concentrator, TCC-LP1, should be used for trace cation
concentration. Trace cation concentrators are used primarily in high purity water analysis. The function of the trace cation
concentrator in these applications is to strip ions from a measured volume of a relatively clean aqueous sample matrix. This can
be accomplished by concentrating large volumes of the sample onto a concentrator column and then using this column in place
of the sample loop. The sample should be pumped into the concentrator column in the OPPOSITE direction of the eluent flow,
otherwise the chromatography will be compromised. This process “concentrates” all cationic analyte species onto the trace cation
concentrator (the TCC-LP1 or the CG12A) leading to a lowering of detection limits by 2-5 orders of magnitude. The unique advantage
of the trace cation concentrator (TCC-LP1 or the CG12A) for the analytical chemist in these applications is the capability of performing
routine trace analyses of sample matrix ions at µg/L levels without extensive and laborious sample pretreatment.
The IonPac CG12A 4-mm Guard Column (P/N 046074) or the Low-Pressure Trace Cation Concentrator (TCC-LP1,
P/N 046027) should be used for sample concentration with the IonPac CS12A 4-mm Analytical Column.
The IonPac CG12A 2-mm Guard Column (P/N 046076) or the Low-Pressure Trace Cation Concentrator (TCC-LP1,
P/N 046027) must be used for sample concentration with the IonPac CS12A 2-mm, the CS12A-5µm 3-mm, or the CS12A-MS Analytical
Column.
In the case of the CS12A-5µm 3-mm, either of the other two guards can also be used. Due to flow rate limitations, it is recommended
that the CG12A-5µm 3-mm column not be used as a preconcentrator column. The TCC-LP1, P/N 046027, should be used for trace
cation preconcentration work on the CS12A-5µm 3-mm.
For Trace Cation Concentration work with the CS12A and CS12A-5µm 0.4 mm Column use the CG12A or CG12A-5µm 0.4 mm Columns.
The Trace Cation Concentrator (TCC-2, P/N 043103) should not be used for sample concentration.
The TCC-2 column packing is a strong cation exchange resin functionalized with sulfonic acid. The
recommended IonPac CS12A eluents will not properly elute ions concentrated on this column.
CAUTION
IonPac CS12A Manual Document No 031132-09 Page 18 of 75
3.6 IonPac CG12A Guard Columns
An IonPac CG12A Guard Column is normally used with the IonPac CS12A Analytical Column. Retention times will increase by
approximately 20% when a guard column is placed in-line prior to the analytical column. A guard is placed prior to the analytical
column to prevent sample contaminants from eluting onto the analytical column. It is easier to clean or replace a guard column than
it is an analytical column. For maximum life of the analytical column, the guard column should be changed or replaced as part of
a regular maintenance schedule or at the first sign of performance deterioration. Use the test chromatogram that is shipped with
the analytical column or the initial application run for a performance benchmark.
3.7 Eluent Storage
IonPac CS12A columns are designed to be used with sulfuric acid or methanesulfonic acid (MSA) eluents. Storage under a helium
atmosphere ensures contamination free operation and proper pump performance (nitrogen can be used if eluents do not contain
solvents).
3.8 Cation Self-Regenerating Suppressor & Cation Capillary Electrolytic Suppressor Requirements
A Cation Self-Regenerating Suppressor should be used for applications that require suppressed conductivity detection. Aqueous
ionic eluents can be used in all CSRS 300 modes of operation.
Solvent containing eluents must be used in the AutoSuppression External Water Mode or in the Chemical
Suppression Mode.
Column Suppressor P/N
IonPac CS12A 4-mm Analytical Column CSRS 300 4-mm 053948
IonPac CS12A-5µm 3-mm Analytical Column CSRS 300 2-mm 053949
IonPac CS12A 2-mm Analytical Column CSRS 300 2-mm 053949
IonPac CS12A 0.4-mm Capillary Column CCES 300 072053
IonPac CS12A-5µm 0.4 mm Capillary Column CCES 300 072053
For detailed information on the operation of the Cation Self-Regenerating Suppressor, see Document No. 031370, the “Product
Manual for the Cation Self-Regenerating Suppressor 300.” For detailed information on the operation of the Cation Capillary
Electrolytic Suppressor, see Document No. 065386.
3.8.1 IC-MS Current Settings for the CSRS 300
Most IC-MS applications use low current for the CSRS 300 suppressors. See section 3.3.4 of the CSRS 300 Manual
(Document No. 031370).
3.9 Cation Atlas Electrolytic Suppressor Requirements
A Cation Atlas Electrolytic Suppressor, CAES, may be substituted for the CSRS 300 for applications up to 25 µeq/min. For detailed
information on the operation of the Cation Atlas Electrolytic Suppressor, see Document No. 031770, the “Product Manual for the
Cation Atlas Electrolytic Suppressor.”
3.10 Cation MicroMembrane Suppressor Requirements
A Cation MicroMembrane Suppressor, CMMS, may be substituted for the CSRS 300. For detailed information on the operation
of the Cation MicroMembrane Suppressor, see Document No. 031728, the Product Manual for the Cation MicroMembrane
Suppressor 300.
NOTE
  • Page 1 1
  • Page 2 2
  • Page 3 3
  • Page 4 4
  • Page 5 5
  • Page 6 6
  • Page 7 7
  • Page 8 8
  • Page 9 9
  • Page 10 10
  • Page 11 11
  • Page 12 12
  • Page 13 13
  • Page 14 14
  • Page 15 15
  • Page 16 16
  • Page 17 17
  • Page 18 18
  • Page 19 19
  • Page 20 20
  • Page 21 21
  • Page 22 22
  • Page 23 23
  • Page 24 24
  • Page 25 25
  • Page 26 26
  • Page 27 27
  • Page 28 28
  • Page 29 29
  • Page 30 30
  • Page 31 31
  • Page 32 32
  • Page 33 33
  • Page 34 34
  • Page 35 35
  • Page 36 36
  • Page 37 37
  • Page 38 38
  • Page 39 39
  • Page 40 40
  • Page 41 41
  • Page 42 42
  • Page 43 43
  • Page 44 44
  • Page 45 45
  • Page 46 46
  • Page 47 47
  • Page 48 48
  • Page 49 49
  • Page 50 50
  • Page 51 51
  • Page 52 52
  • Page 53 53
  • Page 54 54
  • Page 55 55
  • Page 56 56
  • Page 57 57
  • Page 58 58
  • Page 59 59
  • Page 60 60
  • Page 61 61
  • Page 62 62
  • Page 63 63
  • Page 64 64
  • Page 65 65
  • Page 66 66
  • Page 67 67
  • Page 68 68
  • Page 69 69
  • Page 70 70
  • Page 71 71
  • Page 72 72
  • Page 73 73
  • Page 74 74
  • Page 75 75
  • Page 76 76
  • Page 77 77

Thermo Fisher Scientific IonPac CS12A Analytical Column and CG12A Guard Column User manual

Type
User manual

Ask a question and I''ll find the answer in the document

Finding information in a document is now easier with AI