Oriental motor FRN0006C2S-7U User manual

Type
User manual
User's Manual
24A7-E-0023d
Compact Inverter
User's Manual
Copyright © 2013-2014 Fuji Electric Co., Ltd.
All rights reserved.
No part of this publication may be reproduced or copied without prior written permission from Fuji Electric
Co., Ltd.
All products and company names mentioned in this manual are trademarks or registered trademarks of their
respective holders.
The information contained herein is subject to change without prior notice for improvement.
i
Preface
This manual provides all the information on the FRENIC-Mini series of inverters including its operating
procedure, operation modes, and selection of peripheral equipment. Carefully read this manual for proper use.
Incorrect handling of the inverter may prevent the inverter and/or related equipment from operating correctly,
shorten their lives, or cause problems.
The table below lists the other materials related to the use of the FRENIC-Mini. Read them in conjunction
with this manual as necessary.
Name Material No. Description
Catalog 24A1-E-0011
Product scope, features, specifications, external
drawings, and options of the product
Instruction Manual INR-SI47-1729-E
Acceptance inspection, mounting & wiring of the
inverter, operation using the keypad, running the
motor for a test, troubleshooting, and maintenance
and inspection
RS-485 Communication
User's Manual MEH448
Overview of functions implemented by the use of
RS-485 communication, the communications
specifications, Modbus RTU/Fuji general-purpose
inverter protocol, related function codes, and data
formats
The materials are subject to change without notice. Be sure to obtain the latest editions for use.
Guideline for Suppressing Harmonics in Home Electric and General-purpose
Appliances
Our three-phase, 200 V class series inverters of 3.7 kW or less (FRENIC-Mini series) were the products of
which were restricted by the "Guideline for Suppressing Harmonics in Home Electric and General-purpose
Appliances" (established in September 1994 and revised in October 1999) issued by the Ministry of
Economy, Trade and Industry.
The above restriction, however, was lifted when the Guideline was revised in January 2004. Since then, the
inverter makers have individually imposed voluntary restrictions on the harmonics of their products.
We, as before, recommend that you connect a reactor (for suppressing harmonics) to your inverter. As a
reactor, select a "DC REACTOR" introduced in this manual. For use of the other reactor, please inquire of us
about detailed specifications.
Japanese Guideline for Suppressing Harmonics by Customers Receiving
High Voltage or Special High Voltage
Refer to this manual, Appendix B for details on this guideline.
ii
Safety precautions
Read this manual and the FRENIC-Mini Instruction Manual (INR-SI47-1729-E) thoroughly before
proceeding with installation, connections (wiring), operation, or maintenance and inspection. Ensure you
have sound knowledge of the product and familiarize yourself with all safety information and precautions
before proceeding to operate the inverter.
Safety precautions are classified into the following two categories in this manual.
Failure to heed the information indicated by this symbol may lead to
dangerous conditions, possibly resulting in death or serious bodily injuries.
Failure to heed the information indicated by this symbol may lead to
dangerous conditions, possibly resulting in minor or light bodily injuries
and/or substantial property damage.
Failure to heed the information contained under the CAUTION title can also result in serious consequences.
These safety precautions are of utmost importance and must be observed at all times.
This product is not designed for use in appliances and machinery on which lives depend. Consult your Fuji
Electric representative before considering the FRENIC-Mini series of inverters for equipment and
machinery related to nuclear power control, aerospace uses, medical uses or transportation. When the
product is to be used with any machinery or equipment on which lives depend or with machinery or
equipment which could cause serious loss or damage should this product malfunction or fail, ensure that
appropriate safety devices and/or equipment are installed.
iii
î‚„ Precautions for Use
Driving a 400 V
general-purpose
motor
When driving a 400 V general-purpose motor with an inverter using
extremely long wires, damage to the insulation of the motor may occur. Use
an output circuit filter (OFL) if necessary after checking with the motor
manufacturer. Fuji motors do not require the use of output circuit filters
because of their reinforced insulation.
Torque
characteristics and
temperature rise
When the inverter is used to run a general-purpose motor, the temperature
of the motor becomes higher than when it is operated using a commercial
power supply. In the low-speed range, the cooling effect will be weakened,
so decrease the output torque of the motor. If constant torque is required in
the low-speed range, use a Fuji inverter motor or a motor equipped with an
externally powered ventilating fan.
Vibration
When an inverter-driven motor is mounted to a machine, resonance may be
caused by the natural frequencies of the machine system.
Note that operation of a 2-pole motor at 60 Hz or higher may cause
abnormal vibration.
* The use of a rubber coupling or vibration-proof rubber is recommended.
* Use the inverter's jump frequency control feature to skip the resonance
frequency zone(s).
In running
general-
purpose
motors
Noise
When an inverter is used with a general-purpose motor, the motor noise
level is higher than that with a commercial power supply. To reduce noise,
raise carrier frequency of the inverter. Operation at 60 Hz or higher can also
result in higher level of wind roaring sound.
High-speed
motors
If the reference frequency is set to 120 Hz or more to drive a high-speed
motor, test-run the combination of the inverter and motor beforehand to
check for safe operation.
Explosion-proof
motors
When driving an explosion-proof motor with an inverter, use a combination
of a motor and an inverter that has been approved in advance.
Submersible
motors and pumps
These motors have a higher rated current than general-purpose motors.
Select an inverter whose rated output current is higher than that of the
motor.
These motors differ from general-purpose motors in thermal characteristics.
Set a low value in the thermal time constant of the motor when setting the
electronic thermal overcurrent protection (for motor).
Brake motors
For motors equipped with parallel-connected brakes, their power supply for
brake must be supplied from the inverter’s primary circuit. If the power
supply for brake is connected to the inverter's output circuit by mistake, the
brake will not work.
Do not use inverters for driving motors with series-connected brake coils.
Geared motors
If the power transmission mechanism uses an oil-lubricated gearbox or
speed changer/reducer, then continuous motor operation at low speed may
cause poor lubrication. Avoid such operation.
In running
special
motors
Single-phase
motors
Single-phase motors are not suitable for inverter-driven variable speed
operation. Use three-phase motors.
Environ-
mental
conditions
Installation
location
Use the inverter within the ambient temperature range from -10 to +50°C.
The heat sink and braking resistor of the inverter may become hot under
certain operating conditions, so install the inverter on nonflammable
material such as metal.
Ensure that the installation location meets the environmental conditions
specified in Chapter 8, Section 8.4 "Operating Environment and Storage
Environment."
iv
Installing an
MCCB or
RCD/ELCB
Install a recommended molded case circuit breaker (MCCB) or
residual-current-operated protective device (RCD)/earth leakage circuit
breaker (ELCB) (with overcurrent protection) in the primary circuit of each
inverter to protect the wiring. Ensure that the circuit breaker capacity is
equivalent to or lower than the recommended capacity.
Installing an MC
in the secondary
circuit
If a magnetic contactor (MC) is installed in the inverter's output (secondary)
circuit for switching the motor to commercial power or for any other
purpose, ensure that both the inverter and the motor are completely stopped
before you turn the MC on or off.
Remove a surge killer integrated with the magnetic contactor in the
inverter's output (secondary) circuit.
Installing an MC
in the primary
circuit
Do not turn the magnetic contactor (MC) in the primary circuit on or off
more than once an hour as an inverter failure may result.
If frequent starts or stops are required during motor operation, use terminal
[FWD]/[REV] signals or the / key.
Protecting the
motor
The electronic thermal feature of the inverter can protect the motor. The
operation level and the motor type (general-purpose motor, inverter motor)
should be set. For high-speed motors or water-cooled motors, set a small
value for the thermal time constant.
If you connect the motor thermal relay to the motor with a long wire, a
high-frequency current may flow into the wiring stray capacitance. This
may cause the thermal relay to trip at a current lower than the set value. If
this happens, lower the carrier frequency or use the output circuit filter
(OFL).
Discontinuance of
power-factor
correcting
capacitor
Do not connect power-factor correcting capacitors to the inverter’s primary
circuit. (Use the DC reactor to improve the inverter power factor.) Do not
use power-factor correcting capacitors in the inverter’s output (secondary)
circuit. An overcurrent trip will occur, disabling motor operation.
Discontinuance of
surge killer Do not connect a surge killer to the inverter's output (secondary) circuit.
Reducing noise
Use of a filter and shielded wires is typically recommended to satisfy EMC
Directive.
Refer to Appendices, App. A "Advantageous Use of Inverters (Notes on
electrical noise)" for details.
Measures against
surge currents
If an overvoltage trip occurs while the inverter is stopped or operated under
light load, it is assumed that the surge current is generated by open/close of
the phase-advancing capacitor in the power system.
* Connect a DC reactor to the inverter.
Combina-
tion with
peripheral
devices
Megger test
When checking the insulation resistance of the inverter, use a 500 V megger
and follow the instructions contained in the FRENIC-Mini Instruction
Manual (INR-SI47-1729-E), Chapter 7, Section 7.5 "Insulation Test."
v
Control circuit
wiring length
When using remote control, limit the wiring length between the inverter and
operator panel to 20 m or less and use twisted pair or shielded wire.
Wiring length
between inverter
and motor
If long wiring is used between the inverter and the motor, the inverter may
overheat or trip due to overcurrent because a higher harmonics current
flows into the stray capacitance between each phase wire. Ensure that the
wiring is shorter than 50 m. If this length must be exceeded, lower the
carrier frequency or install an output circuit filter (OFL).
Wire size Select wires with a sufficient capacity by referring to the current value or
recommended wire size.
Wire type Do not share one multi-core cable in order to connect several inverters with
motors.
Wiring
Grounding Securely ground the inverter using the grounding terminal.
Driving
general-purpose
motor
Select an inverter according to the nominal applied motor ratings listed in
the standard specifications table for the inverter.
When high starting torque is required or quick acceleration or deceleration
is required, select an inverter with one rank larger capacity than the
standard. Refer to Chapter 7, Section 7.1 "Selecting Motors and Inverters"
for details.
Selecting
inverter
capacity
Driving special
motors
Select an inverter that meets the following condition:
Inverter rated current > Motor rated current
Transpor-
tation and
storage
For transportation and storage instructions, see the FRENIC-Mini Instruction Manual
(INR-SI47-1729-E), Chapter 1, Section 1.3 "Transportation" and Section 1.4 "Storage
Environment."
vi
How this manual is organized
This manual contains Chapters 1 through 9, and Appendices.
Chapter 1 INTRODUCTION TO FRENIC-MINI
This chapter describes the features and control system of the FRENIC-Mini series, and the recommended
configuration for the inverter and peripheral equipment.
Chapter 2 PARTS NAMES AND FUNCTIONS
This chapter contains external views of the FRENIC-Mini series and an overview of terminal blocks,
including a description of the LED display and keys on the keypad.
Chapter 3 OPERATION USING THE KEYPAD
This chapter describes inverter operation using the keypad. The inverter features three operation modes
(Running, Programming and Alarm modes) which enable you to run and stop the motor, monitor running
status, set function code data, display running information required for maintenance, and display alarm data.
Chapter 4 BLOCK DIAGRAMS FOR CONTROL LOGIC
This chapter describes the main block diagrams for the control logic of the FRENIC-Mini series of inverters.
Chapter 5 RUNNING THROUGH RS-485 COMMUNICATIONS
This chapter describes an overview of inverter operation through the RS-485 communications facility. Refer
to the RS-485 Communication User's Manual (MEH448) for details.
Chapter 6 SELECTING PERIPHERAL EQUIPMENT
This chapter describes how to use a range of peripheral equipment and options, FRENIC-Mini's
configuration with them, and requirements and precautions for selecting wires and crimp terminals.
Chapter 7 SELECTING OPTIMAL MOTOR AND INVERTER CAPACITIES
This chapter provides you with information about the inverter output torque characteristics, selection
procedure, and equations for calculating capacities to help you select optimal motor and inverter models. It
also helps you select braking resistors.
Chapter 8 SPECIFICATIONS
This chapter describes specifications of the output ratings, control system, and terminal functions for the
FRENIC-Mini series of inverters. It also provides descriptions of the operating and storage environment,
external dimensions, examples of basic connection diagrams, and details of the protective functions.
Chapter 9 FUNCTION CODES
This chapter contains overview lists of seven groups of function codes available for the FRENIC-Mini series
of inverters and details of each function code.
Appendices
App. A Advantageous Use of Inverters (Notes on electrical noise)
App. B Japanese Guideline for Suppressing Harmonics by Customers Receiving High Voltage or Special
High Voltage
App. C Effect on Insulation of General-purpose Motors Driven with 400 V Class Inverters
App. D Inverter Generating Loss
App. E Conversion from SI Units
App. F Allowable Current of Insulated Wires
App. G Replacement Information
vii
Icons
The following icons are used throughout this manual.
This icon indicates information which, if not heeded, can result in the inverter not operating to
full efficiency, as well as information concerning incorrect operations and settings which can
result in accidents.
This icon indicates information that can prove handy when performing certain settings o
r
operations.
 This icon indicates a reference to more detailed information.
viii
CONTENTS
Chapter 1 INTRODUCTION TO FRENIC-Mini
1.1 Features..................................................................................................................................................... 1-1
1.2 Control System ....................................................................................................................................... 1-10
1.3 Recommended Configuration ................................................................................................................. 1-11
Chapter 2 PARTS NAMES AND FUNCTIONS
2.1 External View and Terminal Blocks ......................................................................................................... 2-1
2.2 Names and Functions of Keypad Components ......................................................................................... 2-2
Chapter 3 OPERATION USING THE KEYPAD
3.1 Overview of Operation Modes ................................................................................................................. 3-1
3.2 Running Mode .......................................................................................................................................... 3-3
3.2.1 Run/stop the motor.............................................................................................................................. 3-3
3.2.2 Set up the reference frequency and PID process command ................................................................ 3-3
3.2.3 Monitor the running status .................................................................................................................. 3-5
3.2.4 Jog (inch) the motor ............................................................................................................................ 3-7
3.3 Programming Mode .................................................................................................................................. 3-8
3.3.1 Setting the function codes--"Data Setting".......................................................................................... 3-9
3.3.2 Checking changed function codes--"Data Checking" ....................................................................... 3-13
3.3.3 Monitoring the running status--"Drive Monitoring" .........................................................................3-14
3.3.4 Checking I/O signal status--"I/O Checking" ..................................................................................... 3-17
3.3.5 Reading maintenance information--"Maintenance Information" ...................................................... 3-21
3.3.6 Reading alarm information--"Alarm Information"............................................................................3-24
3.4 Alarm Mode............................................................................................................................................ 3-28
3.4.1 Releasing the alarm and transferring the inverter to Running mode ................................................. 3-28
3.4.2 Displaying the alarm history ............................................................................................................. 3-28
3.4.3 Displaying the running information when an alarm occurs .............................................................. 3-29
3.4.4 Transferring to Programming mode .................................................................................................. 3-29
Chapter 4 BLOCK DIAGRAMS FOR CONTROL LOGIC
4.1 Symbols Used in the Block Diagrams and their Meanings.......................................................................4-1
4.2 Drive Frequency Command Generator..................................................................................................... 4-2
4.3 Drive Command Generator....................................................................................................................... 4-4
4.4 Terminal Command Decoders .................................................................................................................. 4-6
4.5 Digital Output Selector ........................................................................................................................... 4-10
4.6 Analog Output (FMA) Selector .............................................................................................................. 4-12
4.7 Drive Command Controller .................................................................................................................... 4-13
4.8 PID Frequency Command Generator...................................................................................................... 4-16
Chapter 5 RUNNING THROUGH RS-485 COMMUNICATIONS
5.1 Overview on RS-485 Communication...................................................................................................... 5-1
5.1.1 Common specifications....................................................................................................................... 5-2
5.1.2 Connector specifications ..................................................................................................................... 5-3
5.1.3 Connection .......................................................................................................................................... 5-4
5.2 Overview of FRENIC Loader................................................................................................................... 5-5
5.2.1 Specifications ...................................................................................................................................... 5-5
5.2.2 Connection .......................................................................................................................................... 5-6
5.2.3 Function overview............................................................................................................................... 5-6
5.2.3.1 Setting of function code .............................................................................................................. 5-6
5.2.3.2 Running status monitor ............................................................................................................... 5-7
5.2.3.3 Test-running ................................................................................................................................ 5-9
ix
Chapter 6 SELECTING PERIPHERAL EQUIPMENT
6.1 Configuring the FRENIC-Mini................................................................................................................. 6-1
6.2 Selecting Wires and Crimp Terminals....................................................................................................... 6-2
6.2.1 Recommended wires........................................................................................................................... 6-4
6.2.2 Crimp terminals................................................................................................................................. 6-12
6.3 Peripheral Equipment ............................................................................................................................. 6-13
6.4 Selecting Options.................................................................................................................................... 6-20
6.4.1 Peripheral equipment options............................................................................................................ 6-20
6.4.2 Options for operation and communications ...................................................................................... 6-33
6.4.3 Extended installation kit options ....................................................................................................... 6-37
6.4.4 Meter options .................................................................................................................................... 6-40
Chapter 7 SELECTING OPTIMAL MOTOR AND INVERTER CAPACITIES
7.1 Selecting Motors and Inverters................................................................................................................. 7-1
7.1.1 Motor output torque characteristics..................................................................................................... 7-1
7.1.2 Selection procedure............................................................................................................................. 7-4
7.1.3 Equations for selections ...................................................................................................................... 7-7
7.1.3.1 Load torque during constant speed running ................................................................................ 7-7
7.1.3.2 Acceleration and deceleration time calculation........................................................................... 7-8
7.1.3.3 Heat energy calculation of braking resistor............................................................................... 7-11
7.1.3.4 Calculating the RMS rating of the motor .................................................................................. 7-12
7.2 Selecting a Braking Resistor................................................................................................................... 7-13
7.2.1 Selection procedure........................................................................................................................... 7-13
7.2.2 Notes on selection ............................................................................................................................. 7-13
Chapter 8 SPECIFICATIONS
8.1 Standard Models ....................................................................................................................................... 8-1
8.1.1 Three-phase 200 V series .................................................................................................................... 8-1
8.1.2 Three-phase 400 V series .................................................................................................................... 8-2
8.1.3 Single-phase 200 V series ................................................................................................................... 8-3
8.1.4 Single-phase 100 V series ................................................................................................................... 8-4
8.2 Semi-standard Models .............................................................................................................................. 8-5
8.2.1 EMC filter built-in type in three-phase 400 V series........................................................................... 8-5
8.2.2 EMC filter built-in type in single-phase 200 V series ......................................................................... 8-6
8.3 Common Specifications............................................................................................................................ 8-7
8.4 Terminal Specifications .......................................................................................................................... 8-11
8.4.1 Terminal functions ............................................................................................................................ 8-11
8.4.2 Location of terminal blocks............................................................................................................... 8-19
8.4.3 Terminal arrangement diagram and screw specifications.................................................................. 8-20
8.4.3.1 Main circuit terminals ............................................................................................................... 8-20
8.4.3.2 Control circuit terminals............................................................................................................ 8-22
8.5 Operating Environment and Storage Environment ................................................................................. 8-24
8.5.1 Operating environment...................................................................................................................... 8-24
8.5.2 Storage environment ......................................................................................................................... 8-25
8.5.2.1 Temporary storage..................................................................................................................... 8-25
8.5.2.2 Long-term storage ..................................................................................................................... 8-25
8.6 External Dimensions............................................................................................................................... 8-26
8.6.1 Standard models ................................................................................................................................ 8-26
8.6.2 EMC filter built-in type..................................................................................................................... 8-32
8.7 Connection Diagrams ............................................................................................................................. 8-37
8.7.1 Keypad operation .............................................................................................................................. 8-37
8.7.2 Operation by external signal inputs................................................................................................... 8-38
8.8 Details of Protective Functions............................................................................................................... 8-39
x
Chapter 9 FUNCTION CODES
9.1 Function Code Tables ............................................................................................................................... 9-1
9.2 Details of Function Codes....................................................................................................................... 9-20
9.2.1 F codes (Fundamental functions) ...................................................................................................... 9-20
9.2.2 E codes (Extension terminal functions)............................................................................................. 9-47
9.2.3 C codes (Control functions) .............................................................................................................. 9-71
9.2.4 P codes (Motor 1 parameters) ........................................................................................................... 9-77
9.2.5 H codes (High performance functions) ............................................................................................. 9-81
9.2.6 A codes (Motor 2 parameters)......................................................................................................... 9-107
9.2.7 J codes (Application functions)....................................................................................................... 9-109
9.2.8 y codes (Link functions).................................................................................................................. 9-119
9.3 Notes in Driving PMSM....................................................................................................................... 9-124
Appendices
App. A Advantageous Use of Inverters (Notes on electrical noise)................................................................... A-1
A.1 Effect of inverters on other devices....................................................................................................... A-1
A.2 Noise...................................................................................................................................................... A-2
A.3 Noise prevention.................................................................................................................................... A-4
App. B Japanese Guideline for Suppressing Harmonics by Customers Receiving High Voltage or
Special High Voltage ........................................................................................................................... A-12
B.1 Application to general-purpose inverters............................................................................................. A-12
B.2 Compliance to the harmonic suppression for customers receiving high voltage or
special high voltage ............................................................................................................................. A-13
App. C Effect on Insulation of General-purpose Motors Driven with 400 V Class Inverters.......................... A-17
C.1 Generating mechanism of surge voltages ............................................................................................ A-17
C.2 Effect of surge voltages ....................................................................................................................... A-18
C.3 Countermeasures against surge voltages ............................................................................................. A-18
C.4 Regarding existing equipment ............................................................................................................. A-19
App. D Inverter Generating Loss ..................................................................................................................... A-20
App. E Conversion from SI Units.................................................................................................................... A-21
App. F Allowable Current of Insulated Wires ................................................................................................. A-23
App. G Replacement Information .................................................................................................................... A-25
G.1 Compatibility and differences between FRENIC-Mini series FRNC1- and
FRNC2- ...................................................................................................................... A-25
G.2 External dimensions comparison tables............................................................................................... A-26
G.3 Terminal arrangements and symbols ................................................................................................... A-29
G.4 Function codes..................................................................................................................................... A-31
Chapter 1
INTRODUCTION TO FRENIC-Mini
This chapter describes the features and control system of the FRENIC-Mini series, and the recommended
configuration for the inverter and peripheral equipment.
Contents
1.1 Features....................................................................................................................................................... 1-1
1.2 Control System.......................................................................................................................................... 1-10
1.3 Recommended Configuration ................................................................................................................... 1-11
1.1 Features
1-1
Chap. 1 INTRODUCTION TO FRENIC-Mini
1.1 Features
Upgraded FRENIC-Mini (FRNî‚…î‚…î‚…î‚…C2î‚…-î‚…î‚…) functions
• Dynamic torque vector control providing bumped-up torque performance
Fuji's original dynamic torque vector control broadens the range of applications.
• RS-485 communications port provided as standard to facilitate system configuration
While the original FRENIC-Mini series has an RS-485 communications port as an option, the
upgraded one has it as standard, making it easy to connect the upgraded one to a PLC and facilitating
system configuration.
• Slow flowrate stop function under PID control for further energy saving
Under PID control for constant pump discharge pressure, the slow flowrate stop function stops the
inverter when the pump discharge pressure is high, which achieves further energy saving.
• Braking signal function making the FRENIC-Mini applicable to simple vertical lift
applications
The upgraded FRENIC-Mini series supports brake ON/OFF signals that are conventionally supported
by the upper inverter series only. The braking signal function enables the FRENIC-Mini to be applied
to simple vertical lift applications.
• Motor switching function
Turning the Di terminal ON and OFF switches between parameters specified for the 1st motor and
those for the 2nd motor. This further broadens the range of applications.
• Motor auto-tuning
The auto-tuning function enables the dynamic torque vector control, automatic energy saving
operation, and other advanced motor controls to be applied also to non-Fuji general purpose motors.
• Long-life DC link bus capacitors, control printed circuit board capacitors and cooling fans
adopted
• Optional USB-equipped remote keypad
Data copying and connection to FRENIC Loader are easy.
• Permanent magnet synchronous motor (PMSM) supported
A PMSM is more efficient than an induction motor (IM) so that further energy saving can be achieved.
• Available capacity range up to 15 kW (20 HP)
The capacity range has been spread.
1-2
Optimum performance for traversing conveyors
• High starting torque, at 150% or more
Equipped with Fuji's original dynamic torque-vector control system and the automatic torque boost
function, these inverters ensure consistent and powerful operation (when automatic torque boost and
slip compensation control are ON and start frequency is set at 3 Hz).
Figure 1.1 Torque Characteristics Data
(Dynamic torque vector control: ON)
Figure 1.2 Example of Output Torque Characteristics
• Braking resistor connectable to the inverter
FRENIC-Mini series of inverters features a built-in braking transistor (for inverters of 0.4 kW (1/2
HP) or larger), which makes it possible for an optional braking resistor to be connected to increase the
regenerative braking ability for conveyance and transportation machinery that requires strong braking
power.
• Trip-free operation
The remarkably improved current limiting function (stall prevention) ensures trip-free operation even
for impact loads.
Figure 1.3 Example of Response for Impact Load Torque
• Stable operation even for a step load
The slip compensation function ensures stable operation even when the motor load fluctuates (step
load).
Figure 1.4 Example of Response for Step Load Torque (Refer to the note in Figure 1.2 for the test configuration.)
1.1 Features
1-3
Chap. 1 INTRODUCTION TO FRENIC-Mini
• Inclusion of a brake signal makes it even more convenient
At brake release time
After the motor runs, the inverter detects torque generation and outputs signals.
At brake application time
Brake application that matches the timing can be done, so mechanical brake wear is reduced.
• Tripless deceleration by automatic deceleration control
The inverter controls the energy level generated and the deceleration time to decelerate to stop the
motor without tripping due to overvoltage.
Figure 1.5
Default functions for fans and pumps
• Automatic energy-saving function provided as standard
To minimize the total loss (motor loss plus inverter loss), rather than just the motor loss as in the
predecessor models, FRENIC-Mini saves even more power when used with fans or pumps.
 Refer to Chapter 4, Section 4.7 "Drive Command Controller" for details.
* Energy savings vary depending on the motor characteristics.
Figure 1.6 Example of Energy Savings
1-4
• PID control function
Permits motor operation while controlling temperature, pressure, or flow rate without using an
external device such as a temperature regulator. Under the constant pump discharge pressure control,
the slow flowrate stop function is available.
 Refer to Chapter 4, Section 4.8 "PID Frequency Command Generator" for details.
• Cooling fan ON/OFF control function
The inverter's cooling fan can be turned off while the fan or pump is stopped for noise reduction and
energy savings.
The ideal functions to serve a multiplicity of needs for small-capacity inverters
• Compatible with a wide range of frequency settings
You can select the optimum frequency setting method that matches your machine or equipment via the
keypad ( / keys or potentiometer), analog input (4 to 20 mA, 0 to 20 mA, 0 to +10 V, 0 to +5 V,
1 to 5 V), 16 multistep speed settings (0 to 15 steps) or via RS-485 communications.
• A transistor output is provided
This enables an overload early warning, lifetime forecast or other information signals to be output
during operation.
 Refer to function code E20 in Chapter 9, Section 9.2.2 "E codes (Extension terminal functions)."
• High output frequency - up to 400 Hz
The inverter can be used with equipment such as centrifugal separators that require a high motor speed.
In this case, you need to check whether the machine operation in combination with the motor is
compatible or not.
• Three points can be set for a non-linear V/f pattern.
The addition of an extra point (total 3 points) for the non-linear V/f pattern, which can be set as desired,
improves the FRENIC-Mini's drive capability, because the V/f pattern can be adjusted to match a
wider application area.
 Refer to Chapter 4, Section 4.7 "Drive Command Controller" for details.
Compact size
• Side-by-side mounting
More than one FRENIC-Mini inverter can be mounted side-by-side without any gap inside your
system control panel, thereby reducing the amount of space required for installation. (Ambient
temperature: 40°C (104°F) or lower)
Unit: mm (inch)
(Example: Inverters of 3-phase 200 V, 0.75 kW (1 HP) or less)
  • Page 1 1
  • Page 2 2
  • Page 3 3
  • Page 4 4
  • Page 5 5
  • Page 6 6
  • Page 7 7
  • Page 8 8
  • Page 9 9
  • Page 10 10
  • Page 11 11
  • Page 12 12
  • Page 13 13
  • Page 14 14
  • Page 15 15
  • Page 16 16
  • Page 17 17
  • Page 18 18
  • Page 19 19
  • Page 20 20
  • Page 21 21
  • Page 22 22
  • Page 23 23
  • Page 24 24
  • Page 25 25
  • Page 26 26
  • Page 27 27
  • Page 28 28
  • Page 29 29
  • Page 30 30
  • Page 31 31
  • Page 32 32
  • Page 33 33
  • Page 34 34
  • Page 35 35
  • Page 36 36
  • Page 37 37
  • Page 38 38
  • Page 39 39
  • Page 40 40
  • Page 41 41
  • Page 42 42
  • Page 43 43
  • Page 44 44
  • Page 45 45
  • Page 46 46
  • Page 47 47
  • Page 48 48
  • Page 49 49
  • Page 50 50
  • Page 51 51
  • Page 52 52
  • Page 53 53
  • Page 54 54
  • Page 55 55
  • Page 56 56
  • Page 57 57
  • Page 58 58
  • Page 59 59
  • Page 60 60
  • Page 61 61
  • Page 62 62
  • Page 63 63
  • Page 64 64
  • Page 65 65
  • Page 66 66
  • Page 67 67
  • Page 68 68
  • Page 69 69
  • Page 70 70
  • Page 71 71
  • Page 72 72
  • Page 73 73
  • Page 74 74
  • Page 75 75
  • Page 76 76
  • Page 77 77
  • Page 78 78
  • Page 79 79
  • Page 80 80
  • Page 81 81
  • Page 82 82
  • Page 83 83
  • Page 84 84
  • Page 85 85
  • Page 86 86
  • Page 87 87
  • Page 88 88
  • Page 89 89
  • Page 90 90
  • Page 91 91
  • Page 92 92
  • Page 93 93
  • Page 94 94
  • Page 95 95
  • Page 96 96
  • Page 97 97
  • Page 98 98
  • Page 99 99
  • Page 100 100
  • Page 101 101
  • Page 102 102
  • Page 103 103
  • Page 104 104
  • Page 105 105
  • Page 106 106
  • Page 107 107
  • Page 108 108
  • Page 109 109
  • Page 110 110
  • Page 111 111
  • Page 112 112
  • Page 113 113
  • Page 114 114
  • Page 115 115
  • Page 116 116
  • Page 117 117
  • Page 118 118
  • Page 119 119
  • Page 120 120
  • Page 121 121
  • Page 122 122
  • Page 123 123
  • Page 124 124
  • Page 125 125
  • Page 126 126
  • Page 127 127
  • Page 128 128
  • Page 129 129
  • Page 130 130
  • Page 131 131
  • Page 132 132
  • Page 133 133
  • Page 134 134
  • Page 135 135
  • Page 136 136
  • Page 137 137
  • Page 138 138
  • Page 139 139
  • Page 140 140
  • Page 141 141
  • Page 142 142
  • Page 143 143
  • Page 144 144
  • Page 145 145
  • Page 146 146
  • Page 147 147
  • Page 148 148
  • Page 149 149
  • Page 150 150
  • Page 151 151
  • Page 152 152
  • Page 153 153
  • Page 154 154
  • Page 155 155
  • Page 156 156
  • Page 157 157
  • Page 158 158
  • Page 159 159
  • Page 160 160
  • Page 161 161
  • Page 162 162
  • Page 163 163
  • Page 164 164
  • Page 165 165
  • Page 166 166
  • Page 167 167
  • Page 168 168
  • Page 169 169
  • Page 170 170
  • Page 171 171
  • Page 172 172
  • Page 173 173
  • Page 174 174
  • Page 175 175
  • Page 176 176
  • Page 177 177
  • Page 178 178
  • Page 179 179
  • Page 180 180
  • Page 181 181
  • Page 182 182
  • Page 183 183
  • Page 184 184
  • Page 185 185
  • Page 186 186
  • Page 187 187
  • Page 188 188
  • Page 189 189
  • Page 190 190
  • Page 191 191
  • Page 192 192
  • Page 193 193
  • Page 194 194
  • Page 195 195
  • Page 196 196
  • Page 197 197
  • Page 198 198
  • Page 199 199
  • Page 200 200
  • Page 201 201
  • Page 202 202
  • Page 203 203
  • Page 204 204
  • Page 205 205
  • Page 206 206
  • Page 207 207
  • Page 208 208
  • Page 209 209
  • Page 210 210
  • Page 211 211
  • Page 212 212
  • Page 213 213
  • Page 214 214
  • Page 215 215
  • Page 216 216
  • Page 217 217
  • Page 218 218
  • Page 219 219
  • Page 220 220
  • Page 221 221
  • Page 222 222
  • Page 223 223
  • Page 224 224
  • Page 225 225
  • Page 226 226
  • Page 227 227
  • Page 228 228
  • Page 229 229
  • Page 230 230
  • Page 231 231
  • Page 232 232
  • Page 233 233
  • Page 234 234
  • Page 235 235
  • Page 236 236
  • Page 237 237
  • Page 238 238
  • Page 239 239
  • Page 240 240
  • Page 241 241
  • Page 242 242
  • Page 243 243
  • Page 244 244
  • Page 245 245
  • Page 246 246
  • Page 247 247
  • Page 248 248
  • Page 249 249
  • Page 250 250
  • Page 251 251
  • Page 252 252
  • Page 253 253
  • Page 254 254
  • Page 255 255
  • Page 256 256
  • Page 257 257
  • Page 258 258
  • Page 259 259
  • Page 260 260
  • Page 261 261
  • Page 262 262
  • Page 263 263
  • Page 264 264
  • Page 265 265
  • Page 266 266
  • Page 267 267
  • Page 268 268
  • Page 269 269
  • Page 270 270
  • Page 271 271
  • Page 272 272
  • Page 273 273
  • Page 274 274
  • Page 275 275
  • Page 276 276
  • Page 277 277
  • Page 278 278
  • Page 279 279
  • Page 280 280
  • Page 281 281
  • Page 282 282
  • Page 283 283
  • Page 284 284
  • Page 285 285
  • Page 286 286
  • Page 287 287
  • Page 288 288
  • Page 289 289
  • Page 290 290
  • Page 291 291
  • Page 292 292
  • Page 293 293
  • Page 294 294
  • Page 295 295
  • Page 296 296
  • Page 297 297
  • Page 298 298
  • Page 299 299
  • Page 300 300
  • Page 301 301
  • Page 302 302
  • Page 303 303
  • Page 304 304
  • Page 305 305
  • Page 306 306
  • Page 307 307
  • Page 308 308
  • Page 309 309
  • Page 310 310
  • Page 311 311
  • Page 312 312
  • Page 313 313
  • Page 314 314
  • Page 315 315
  • Page 316 316
  • Page 317 317
  • Page 318 318
  • Page 319 319
  • Page 320 320
  • Page 321 321
  • Page 322 322
  • Page 323 323
  • Page 324 324
  • Page 325 325
  • Page 326 326
  • Page 327 327
  • Page 328 328
  • Page 329 329
  • Page 330 330
  • Page 331 331
  • Page 332 332
  • Page 333 333
  • Page 334 334
  • Page 335 335
  • Page 336 336
  • Page 337 337
  • Page 338 338
  • Page 339 339
  • Page 340 340
  • Page 341 341
  • Page 342 342
  • Page 343 343
  • Page 344 344
  • Page 345 345
  • Page 346 346
  • Page 347 347
  • Page 348 348
  • Page 349 349
  • Page 350 350
  • Page 351 351
  • Page 352 352
  • Page 353 353
  • Page 354 354
  • Page 355 355
  • Page 356 356
  • Page 357 357
  • Page 358 358
  • Page 359 359
  • Page 360 360
  • Page 361 361
  • Page 362 362
  • Page 363 363
  • Page 364 364
  • Page 365 365
  • Page 366 366

Oriental motor FRN0006C2S-7U User manual

Type
User manual

Ask a question and I''ll find the answer in the document

Finding information in a document is now easier with AI