1-6
Z16C30 USC
®
USER'S MANUAL
UM97USC0100
ZILOG
1.5.6 Software Summary (Continued)
Table 1-2. Serial Interfacing Features of the USC (Chapter 4)
Clock Selection Clocking for the Transmitter and Receiver can come from the
/RxC or /TxC pins, and can be used directly or can be divided by 4, 8,
16, or 32 by Counters 0 and 1, and/or by any value from 1 to 65,536 by
Baud Rate Generators 0 and 1. Or, clocking can come from the Digital
Phase Locked Loop (DPLL) module, which tracks transitions on the
RxD pin.
Clock Output Clocking can also be driven out on the /TxC or /RxC pin for use by on-
board logic, a modem or other interface.
CTR0, CTR1 These two 5-bit free-running counters can each divide /RxC or /TxC by
4, 8, 16, or 32. They can provide the Transmit or Receive bit clocks
directly, or can act as “prescalers” for the Baud Rate Generators.
Baud Rate Generators BRG0 and BRG1 are 16-bit counters, each of which can divide /RxC,
/TxC, or the output of CTR0 or CTR1 by any value from 1 to 65,536. They
can source the Transmit or Receive bit clocks, act as the reference
clock for the DPLL, or can be used as timers on either a polled or
interrupt-driven basis. They can be stopped and started by software,
and can run continuously or stop when they reach zero. Their period
(time constant) values can be reprogrammed dynamically, effective
immediately or when the BRG counts down to zero.
Digital-Phase Locked Loop The DPLL can divide /RxC, /TxC, or the output of BRG0 or BRG1 by 8,
16, or 32, while resynchronizing to transitions on RxD, to recover a
Receive clock from the Receive data signal. This can be done only
when the received data stream includes enough transitions to keep the
recovered clock synchronized to the data. NRZI-Space encoding of
HDLC/SDLC frames, or Biphase (FM) encoding with any protocol,
guarantees such data transitions.
Data Encoding The USC can encode transmitted data and decode received data in
NRZI-Mark, NRZI-Space, Biphase-Mark (FM1), Biphase-Space (FM0),
Biphase-Level (Manchester), or Differential-Biphase-Level modes.
These encodings are used in various applications to maintain synchro-
nization between transmitting and receiving equipment.
Echoing and Looping Received data can be repeated onto TxD, or transmit data can be
looped back to the Receiver for testing.
Modem Controls and Interrupts Carrier Detect and Clear to Send inputs can auto-enable the
Receiver and Transmitter, respectively. Rising and/or falling edges on
these pins can cause interrupts, as can edges on the Transmit and
Receive Clock pins (if they’re not used for clocking), and/or the
Transmit and Receive Request pins if they’re not used for DMA
requests.
DMA Controller Interface Each channel of the USC provides Tx and Rx Request outputs for
connection to a DMA controller, and Tx and Rx Acknowledge inputs for
“flyby” (single-cycle) DMA operation. The Acknowledge pins can be
used for other purposes if “flowthrough” (two-cycle) DMA controller is
employed. Both Request and Acknowledge pins can be used for other
purposes if no DMA controller is used.