Phytec phyCORE-i.MX35 User manual

  • Hello! I am an AI chatbot trained to assist you with the Phytec phyCORE-i.MX35 User manual. I’ve already reviewed the document and can help you find the information you need or explain it in simple terms. Just ask your questions, and providing more details will help me assist you more effectively!
A product of a PHYTEC Technology Holding company
phyCORE-i.MX35
HARDWARE MANUAL
EDITION JUNE 2010
phyCORE-i.MX35
PHYTEC Messtechnik GmbH 2010 L-734e_1
In this manual are descriptions for copyrighted products that are not explicitly indicated
as such. The absence of the trademark () and copyright () symbols does not imply
that a product is not protected. Additionally, registered patents and trademarks are
similarly not expressly indicated in this manual.
The information in this document has been carefully checked and is believed to be
entirely reliable. However, PHYTEC Messtechnik GmbH assumes no responsibility for
any inaccuracies. PHYTEC Messtechnik GmbH neither gives any guarantee nor accepts
any liability whatsoever for consequential damages resulting from the use of this manual
or its associated product. PHYTEC Messtechnik GmbH reserves the right to alter the
information contained herein without prior notification and accepts no responsibility for
any damages which might result.
Additionally, PHYTEC Messtechnik GmbH offers no guarantee nor accepts any liability
for damages arising from the improper usage or improper installation of the hardware or
software. PHYTEC Messtechnik GmbH further reserves the right to alter the layout
and/or design of the hardware without prior notification and accepts no liability for doing
so.
Copyright 2010 PHYTEC Messtechnik GmbH, D-55129 Mainz.
Rights - including those of translation, reprint, broadcast, photomechanical or similar
reproduction and storage or processing in computer systems, in whole or in part - are
reserved. No reproduction may occur without the express written consent from PHYTEC
Messtechnik GmbH.
EUROPE NORTH AMERICA
Address: PHYTEC Technologie Holding AG
Robert-Koch-Str. 39
D-55129 Mainz
GERMANY
PHYTEC America LLC
203 Parfitt Way SW, Suite G100
Bainbridge Island, WA 98110
USA
Ordering
Information: +49 (800) 0749832
[email protected] 1 (800) 278-9913
Technical
Support: +49 (6131) 9221-31
[email protected] 1 (800) 278-9913
Fax: +49 (6131) 9221-33 1 (206) 780-9135
Web Site: http://www.phytec.de http://www.phytec.com
1rst Edition June 2010
Contents
PHYTEC Messtechnik GmbH 2010 L-734e_1
1 Preface...................................................................................................1
1.1 Introduction.....................................................................................2
1.2 Block Diagram................................................................................4
1.3 View of the phyCORE-i.MX35........................................................5
2 Pin Description.....................................................................................7
3 Jumpers...............................................................................................21
4 Power Requirements..........................................................................26
5 Real Time Clock U1 Backup-Voltage................................................27
6 System Configuration........................................................................28
6.1 System Startup Configuration ......................................................28
6.1.1 Power-Up-Mode..............................................................28
6.1.2 Boot Mode Select ...........................................................29
7 System Memory..................................................................................30
7.1 Memory Model..............................................................................31
7.2 DDR2-SDRAM (U6-U7)................................................................32
7.3 NOR-Flash (U9)............................................................................33
7.4 NAND Flash Memory (U10) .........................................................34
7.5 I²C EEPROM (U2)........................................................................35
7.5.1 Setting the EEPROM Lower Address Bits
(J11, J14, J15)................................................................36
7.5.2 EEPROM Write Protection Control (J1)..........................37
8 RS-232 .................................................................................................38
8.1 RS232 Transceiver (U12).............................................................38
8.1.1 UART2 Routing (RN4)....................................................39
9 USB......................................................................................................40
9.1 USB-OTG.....................................................................................40
9.2 USB-Host......................................................................................40
10 Ethernet Controller / Ethernet-Phy (U5)...........................................41
11 CAN......................................................................................................42
12 JTAG Interface (X2)............................................................................44
13 Technical Specifications ...................................................................48
phyCORE-i.MX35
PHYTEC Messtechnik GmbH 2010 L-734e_1
14 Hints for Handling the phyCORE-i.MX35 .........................................50
15 The phyCORE i.MX35 on the i.MX Carrier Board............................52
15.1 Concept of the phyCORE-i.MX Development Kits.......................53
15.2 phyMAP-i.MX35............................................................................54
15.2.1 phyMAP-i.MX35 Jumper Settings...................................56
15.2.2 phyMAP-i.MX35 Signal Mapping....................................59
15.2.3 phyMAP-i.MX35 USB-Host Interface..............................66
15.2.4 phyMAP-i.MX35 CAN Interface......................................68
15.2.5 phyMAP-i.MX35 Boot Select Switch...............................70
15.2.6 phyMAP-i.MX35 Mapper Physical Dimensions..............72
15.3 Cooperation of phyCORE-i.MX35 and
phyCORE-i.MX Carrier Board ......................................................73
15.3.1 Power Supply..................................................................74
15.3.2 CAN Interface.................................................................78
15.3.3 Push Buttons and LEDs .................................................80
15.3.4 Keypad Interface.............................................................82
15.3.5 Compact Flash Card.......................................................83
15.3.6 Security Digital Card/ MultiMedia Card...........................84
15.3.7 Audio and Touchscreen..................................................86
15.3.8 USB Host........................................................................88
15.3.9 LCD Connectors.............................................................90
15.3.10 Camera Interface............................................................92
15.3.11 JTAG Interface................................................................95
15.3.12 Complete Jumper Setting List for phyCORE-i.MX35
on the i.MX Carrier Board...............................................97
16 Revision History...............................................................................100
17 Component Placement Diagram.....................................................102
Index..........................................................................................................104
Contents
PHYTEC Messtechnik GmbH 2010 L-734e_1
Index of Figures
Figure 1: Block Diagram of the phyCORE-i.MX35 ......................................4
Figure 2: Top View of the phyCORE-i.MX35 (Controller Side)....................5
Figure 3: Bottom View of the phyCORE-i.MX35 (Connector Side).............6
Figure 4: Pin-Out of the phyCORE-Connector
(Top View, with Cross Section Insert)..........................................8
Figure 5: Typical Jumper Pad Numbering Scheme...................................21
Figure 6: Jumper Locations (Top View).....................................................22
Figure 7: Jumper Locations (Bottom View) ...............................................23
Figure 8: JTAG Interface at X2 (Top View)................................................44
Figure 9: JTAG Interface at X2 (Bottom View) ..........................................45
Figure 10: Physical Dimensions of phyCORE-i.MX35 Module....................48
Figure 11: phyCORE-i.MX35 Carrier Board Connection Using
the phyMAP-i.MX35....................................................................53
Figure 12: phyMAP-i.MX35 Top View..........................................................54
Figure 13: phyMAP-i.MX35 Bottom View ...................................................55
Figure 14: Jumper Location on PMA-005....................................................56
Figure 15: PMA-005 USB-Host Interface.....................................................66
Figure 16: PMA-005 CAN Interface.............................................................68
Figure 17: PMA-005 Boot Select Dip-Switch...............................................70
Figure 18: Physical Dimensions of phyMAP-i.MX35 Mapper......................72
Figure 19: pyhCORE-i.MX Carrier Board and phyCORE-i.MX35
Power Supply .............................................................................74
Figure 20: phyCORE-i.MX Carrier Board CAN Interface.............................78
Figure 21: phyCORE-i.MX Carrier Board Buttons and LEDs......................80
Figure 22: phyCORE-i.MX Carrier Board Keypad Interface........................82
Figure 23: phyCORE-i.MX Carrier Board SD/MMC Card Interface.............84
Figure 24: phyCORE-i.MX Carrier Board Audio/Touch Interface................86
Figure 25: phyCORE-iMX Carrier Board USB-Host Interface.....................88
Figure 26: phyCORE-i.MX Carrier Board LCD Interfaces...........................90
phyCORE-i.MX35
PHYTEC Messtechnik GmbH 2010 L-734e_1
Figure 27: phyCORE-i.MX Carrier Board Camera Interface .......................92
Figure 28: phyCORE-iMX Carrier Board JTAG Interface............................95
Figure 29: phyCORE-i.MX35 Component Placement (Top View).............102
Figure 30: phyCORE-i.MX35 Component Placement
(Bottom View)...........................................................................103
Contents
PHYTEC Messtechnik GmbH 2010 L-734e_1
Index of Tables
Table 1: Pin-out of the phyCORE-Connector X1........................................9
Table 2: Jumper settings..........................................................................24
Table 3: i.MX35 default power input voltages ..........................................26
Table 4: Basic Boot Modes of i.MX35x Module........................................29
Table 5: Advanced Boot Modes of i.MX35x Module ................................29
Table 6: i.MX35 Memory Map ..................................................................31
Table 7: Compatible NOR Flash Devices.................................................33
Table 8: Compatible NAND Flash Devices ..............................................34
Table 9: U2 EEPROM I²C Address via J11, J14, and J15.......................36
Table 10: EEPROM Write Protection States via J1....................................37
Table 11: RN4 UART2 Signal Routing.......................................................39
Table 12: Fast Ethernet Controller Memory Map.......................................41
Table 13: CAN Controller Memory Map .....................................................42
Table 14: JTAG Connector X2 Signal Assignment ....................................46
Table 15: Jumper Settings of PMA-005......................................................58
Table 16: PMA-005 Mapping List...............................................................59
Table 17: PMA-005 USB-Host Jumper Settings ........................................67
Table 18: PMA-005 CAN Jumper Settings.................................................69
Table 19: x_BOOT3 Selection....................................................................71
Table 20: x_BOOT4 Selection....................................................................71
Table 21: Jumper settings for i.MX35 Power Supply via
Power Plug .................................................................................75
Table 22: Jumper Settings for i.MX35 Power Supply via POE...................76
Table 23: Jumper Settings for i.MX35 Power Supply via Battery...............77
Table 24: CAN2 Interface Jumper Settings................................................79
Table 25: x_BOOT_MODE0 Selection.......................................................81
Table 26: x_BOOT_MODE1 Selection.......................................................81
Table 27: x_Switch .....................................................................................81
phyCORE-i.MX35
PHYTEC Messtechnik GmbH 2010 L-734e_1
Table 28: SD/MMC Interface Jumper Settings for
i.MX35 Module............................................................................85
Table 29: Audio/Touchscreen Interface Jumper Settings for
i.MX35 Module............................................................................87
Table 30: UBS Host Interface Jumper Settings for i.MX35
Module........................................................................................89
Table 31: Camera Interface Jumper Settings for i.MX35 Module ..............93
Table 32: JTAG Jumper Settings for phyCORE-i.MX35 Module................96
Table 33: Jumper Settings for i.MX35 Module on i.MX
Carrier Board..............................................................................97
Preface
PHYTEC Messtechnik GmbH 2010 L-734e_1 1
1 Preface
This hardware manual describes the phyCORE-i.MX35 Single Board Computer’s design and function.
Precise specifications for the Freescale i.MX35 microcontrollers can be found in the enclosed
microcontroller Data Sheet/User's Manual.
In this hardware manual and in the attached schematics, active low signals are denoted by a "/" or “#”
preceding the signal name (e.g.: /RD or #RD). A "0" indicates a logic zero or low-level signal, while a
"1" represents a logic one or high-level signal.
Declaration of Electro Magnetic Conformity of the PHYTEC
phyCORE-I.MX35
PHYTEC Single Board Computers (henceforth products) are designed for installation
in electrical appliances or as dedicated Evaluation Boards (i.e.: for use as a test and prototype
platform for hardware/software development) in laboratory environments.
Caution:
PHYTEC products lacking protective enclosures are subject to damage by ESD and, hence, may only
be unpacked, handled or operated in environments in which sufficient precautionary measures have
been taken in respect to ESD-dangers. It is also necessary that only appropriately trained personnel
(such as electricians, technicians and engineers) handle and/or operate these products. Moreover,
PHYTEC products should not be operated without protection circuitry if connections to the product's
pin header rows are longer than 3 m.
PHYTEC products fulfill the norms of the European Union’s Directive for Electro Magnetic Conformity
only in accordance to the descriptions and rules of usage indicated in this hardware manual
(particularly in respect to the pin header row connectors, power connector and serial interface to a
host-PC).
Implementation of PHYTEC products into target devices, as well as user modifications and extensions
of PHYTEC products, is subject to renewed establishment of conformity to, and certification of,
Electro Magnetic Directives. Users should ensure conformance following any modifications to the
products as well as implementation of the products into target systems.
The phyCORE-i.MX35 is one of a series of PHYTEC Single Board Computers that can be populated
with different controllers and, hence, offers various functions and configurations. PHYTEC supports a
variety of 8-/16- and 32-bit controllers in two ways:
(1) as the basis for Rapid Development Kits which serve as a reference and evaluation platform
(2) as insert-ready, fully functional phyCORE OEM modules, which can be embedded directly
into the user’s peripheral hardware design.
PHYTEC's microcontroller modules allow engineers to shorten development horizons, reduce design
costs and speed project concepts from design to market. For more information go to:
http://www.phytec.com/services/phytec-advantage.html
phyCORE-i.MX35
2 PHYTEC Messtechnik GmbH 2010 L-734e_1
1.1 Introduction
The phyCORE-i.MX35 belongs to PHYTEC’s phyCORE Single Board Computer module family. The
phyCORE SBCs represent the continuous development of PHYTEC Single Board Computer
technology. Like its mini-, micro- and nanoMODUL predecessors, the phyCORE boards integrate all
core elements of a microcontroller system on a subminiature board and are designed in a manner
that ensures their easy expansion and embedding in peripheral hardware developments.
As independent research indicates that approximately 70 % of all EMI (Electro Magnetic Interference)
problems stem from insufficient supply voltage grounding of electronic components in high frequency
environments the phyCORE board design features an increased pin package. The increased pin
package allows dedication of approximately 20 % of all pin header connectors on the phyCORE
boards to ground. This improves EMI and EMC characteristics and makes it easier to design complex
applications meeting EMI and EMC guidelines using phyCORE boards even in high noise
environments.
phyCORE boards achieve their small size through modern SMD technology and multi-layer design. In
accordance with the complexity of the module, 0402-packaged SMD components and laser-drilled
microvias are used on the boards, providing phyCORE users with access to this cutting edge
miniaturization technology for integration into their own design.
The phyCORE-i.MX35 is a subminiature (85 x 58 mm) insert-ready Single Board Computer populated
with the Freescale i.MX35x microcontroller. Its universal design enables its insertion in a wide range
of embedded applications. All controller signals and ports extend from the controller to high-density
pitch (0.635 mm) connectors aligning two sides of the board, allowing it to be plugged like a "big chip"
into a target application.
Precise specifications for the controller populating the board can be found in the applicable controller
User’s Manual or datasheet. The descriptions in this manual are based on the Freescale i.MX35x. No
description of compatible microcontroller derivative functions is included, as such functions are not
relevant for the basic functioning of the phyCORE-i.MX35.
Introduction
PHYTEC Messtechnik GmbH 2010 L-734e_1 3
The phyCORE-I.MX35 offers the following features:
Subminiature Single Board Computer (85 x 58 mm) achieved through modern SMD technology
Populated with the Freescale i.MX35x microcontroller (MAPBGA 1568-01, 17x17mm, 0.8 Pitch
packaging)
Improved interference safety achieved through multi-layer PCB technology and dedicated ground
pins
Controller signals and ports extend to two 200-pin high-density (0.635 mm) Molex connectors
aligning two sides of the board, enabling it to be plugged like a "big chip" into target application
Max. 532 MHz core clock frequency
Boot from NOR or NAND Flash
32 MByte (up to 64MByte) Intel Strata NOR Flash
1 GByte (up to 32 GByte) on-board NAND Flash1
128 MByte (up to 256 MByte) DDR2 SDRAM on-board
RS-232 transceiver supporting one UART at data rates of up to 460kbps
UART Interface without transceiver
32 KB I2C EEPROM
Separate I²C RTC with backup function
Integrated High-Speed USB OTG and Full-Speed USB Host PHYs
Integrated 10/100MBit Ethernet Controller, Ethernet-PHY onboard
Two integrated CAN Controllers
All controller required supplies generated on board by Power-Supply device
Synchronous 24Bit LCD-Interface
12-/16-bit CMOS Camera Interface
Support of standard 20 pin debug interface through JTAG connector
Keyboard support for up to 16 keys in a 4 * 4 matrix
Two I2C interfaces
SD/MMC card interface with DMA
1: Please contact PHYTEC for more information about additional module configurations.
phyCORE-i.MX35
4 PHYTEC Messtechnik GmbH 2010 L-734e_1
1.2 Block Diagram
Figure 1: Block Diagram of the phyCORE-i.MX35
Introduction
PHYTEC Messtechnik GmbH 2010 L-734e_1 5
1.3 View of the phyCORE-i.MX35
C69
C31
C42
C90
C45
J9
C120
C168
C15
R26
J5
R38
C73
C50 C116
R47
C178
R20 C154
R94 C143
C184
TP2 R29
J7
R51
C91
U10
C76
C110
J24
C87
C145
C86
U6
R35
R72
C104
R4
J14
C81
C188
C72
X2
C174
C75
R75
C40
C121
C161
C67
TP1 J21
C61
C180
C68
C63
R93
U2
C70
R84
R69
XT2
L15
R78
C177
C97
U14
U1
U7
C171
R23
C84
C182
C13
L14
C89
TP9
C74
C113
U13
C33
XT3
C123
C106
R30
J10
C190
C102
L16
C94
R21
R40
C175
C25
C46
U16
R73
C112
C88
J1
R80
C77
R52
J11 TP5
R77
R28
C79
J12
C187
C142
C189
C169
C173
R71
TP4
R43
Q1
C96
R79
TP7
R37
C55
J8
R83
C54
R45
R70
C111
R22
R39
C183
C164
U18
C185
U8
C160
R5
C49
C181
C186
R50
C165
J15
C124
C191
J23
C6
C176
C115
R49
C159
C179
PHYTEC
PCM-043
TP6
U17
U15
RN4
C57
U19
TP8
U9
C114
C153
C32
RN2 RN1
TP3
U4
Figure 2: Top View of the phyCORE-i.MX35 (Controller Side)
phyCORE-i.MX35
6 PHYTEC Messtechnik GmbH 2010 L-734e_1
R74
J22
TP17
R9
C149
C41
C34
C132
TP13
C4
C141
R32
C155
R46
R13
C12
C193
L3
C3
R25
C39
TP14
C107
C147
R95
C105
L7
R76
C162
C192 C197
R1
TP16
R6
C29
C28
J13
C156
C108
C158
R17
R81
C194
C138
C131 TP10
R34
C128
C1
J4
C196
C44
R36
L5
C93
C60
TP18
C146
C18
C126
R44
R48
C152
C36
C127
C166 R41
U12
L6
C30
C35
C8
C59
C137
C118
R16
L1
C167
TP15
R18
C195
U3
C139
C5
R2
R11
C119
C56
R7
C170
C19
L2
R100
R96
C23
C151
J2
C21
J3
R42
U20
C2
R10
C16
R3
C26
C64
C37
C148
C71
R98
R82
R33
C100
C65
C22
C163
C103
R68
C11
C66
C109
R19
C17
C7
R12
C83
U11
L4
C62
XT1
C172
L12
C38
C134
C82
C129
C157
C80
R24
L13
C24
C78
R8
C48
R97
R31
C9
TP11
TP12
C99
R27
C10
C58
C14
C27
C47
C43
C85
R14
C92
C101
R15
C95
U5
X1A
X1B
RN3
C122
C20 C150
C140
C98
C136
C117
R99
C144
C125
C133
C52
C130
C51 C53
C135
X2
Figure 3: Bottom View of the phyCORE-i.MX35 (Connector Si
de)
Pin Description
PHYTEC Messtechnik GmbH 2010 L-734e_1 7
2 Pin Description
Please note that all module connections are not to exceed their expressed maximum voltage or
current. Maximum signal input values are indicated in the corresponding controller manuals/data
sheets. As damage from improper connections varies according to use and application, it is the user's
responsibility to take appropriate safety measures to ensure that the module connections are
protected from overloading through connected peripherals.
As Figure 4 indicates, all controller signals extend to surface mount technology (SMT) connectors
(0.635 mm) lining two sides of the module (referred to as phyCORE-connector). This allows the
phyCORE-i.MX35 to be plugged into any target application like a "big chip".
A new numbering scheme for the pins on the phyCORE-connector has been introduced with the
phyCORE specifications. This enables quick and easy identification of desired pins and minimizes
errors when matching pins on the phyCORE-module with the phyCORE-connector on the appropriate
PHYTEC Development Board or in user target circuitry.
The numbering scheme for the phyCORE-connector is based on a two dimensional matrix in which
column positions are identified by a letter and row position by a number. Pin 1A, for example, is
always located in the upper left hand corner of the matrix. The pin numbering values increase moving
down on the board. Lettering of the pin connector rows progresses alphabetically from left to right
(refer to Figure 4).
The numbered matrix can be aligned with the phyCORE-i.MX35 (viewed from above;
phyCORE-connector pointing down) or with the socket of the corresponding phyCORE Development
Board/user target circuitry. The upper left-hand corner of the numbered matrix (pin 1A) is thus
covered with the corner of the phyCORE-i.MX35 marked with a triangle. The numbering scheme is
always in relation to the PCB as viewed from above, even if all connector contacts extend to the
bottom of the module.
The numbering scheme is thus consistent for both the module’s phyCORE-connector as well as
mating connectors on the phyCORE Development Board or target hardware, thereby considerably
reducing the risk of pin identification errors.
Since the pins are exactly defined according to the numbered matrix previously described, the
phyCORE-connector is usually assigned a single designator for its position (X1 for example). In this
manner the phyCORE-connector comprises a single, logical unit regardless of the fact that it could
consist of more than one physical socketed connector.
The location of row 1 on the board is marked by a triangle on the PCB to allow easy identification.
The following figure (Figure 4) illustrates the numbered matrix system. It shows a phyCORE-i.MX35
with SMT phyCORE-connectors on its underside (defined as dotted lines) mounted on a Development
Board. In order to facilitate understanding of the pin assignment scheme, the diagram presents a
cross-view of the phyCORE-module showing these phyCORE-connectors mounted on the underside
of the module’s PCB.
phyCORE-i.MX35
8 PHYTEC Messtechnik GmbH 2010 L-734e_1
Figure 4: Pin-Out of the phyCORE-Connector (Top View, with Cross Section
Insert)
Table 1 provides an overview of the pin-out of the phyCORE-connector, as well as descriptions of
possible alternative functions.
Table 1 also provides the appropriate signal level interface voltages listed in the SL (Signal Level)
column. The Freescale i.MX35 is a multi-voltage operated microcontroller and as such special
attention should be paid to the interface voltage levels to avoid unintentional damage to the
microcontroller and other on-board components. Please refer to the Freescale i.MX35 User’s
Manual/Data Sheet for details on the functions and features of controller signals and port pins.
Pin Description
PHYTEC Messtechnik GmbH 2010 L-734e_1 9
Note:
SL is short for Signal Level (V) and is the applicable logic level to interface a given pin.
Table 1: Pin-out of the phyCORE-Connector X1
PIN ROW X1A
PIN # SIGNAL I/O SL DESCRIPTION
1A VDD_3V3 - VDD_3V3 LCD reference voltage (3.3 V)
2A GND - 0 Ground 0 V
3A not connected - - Pin left unconnected
4A not connected - - Pin left unconnected
5A X_LCD_VSYNC I/O VDD_3V3 Display vertical synchronization pulse
6A not connected - - Pin left unconnected
7A GND - 0 Ground 0 V
8A X_LCD_REV O VDD_3V3 REV signal for display
9A X_LCD_SPL O VDD_3V3 SPL/SPR signal for display
10A X_LCD_DRDY O VDD_3V3 Data enable signal for display
11A not connected - - Pin left unconnected
12A GND - 0 Ground 0 V
13A X_LCD_LD0 I/O VDD_3V3 Input/Output data 0 to display
14A X_LCD_LD2 I/O VDD_3V3 Input/Output data 2 to display
15A X_LCD_LD3 I/O VDD_3V3 Input/Output data 3 to display
16A X_LCD_LD5 I/O VDD_3V3 Input/Output data 5 to display
17A GND - 0 Ground 0 V
18A X_LCD_LD8 I/O VDD_3V3 Input/Output data 8 to display
19A X_LCD_LD10 I/O VDD_3V3 Input/Output data 10 to display
20A X_LCD_LD11 I/O VDD_3V3 Input/Output data 11 to display
21A X_LCD_LD13 I/O VDD_3V3 Input/Output data 13 to display
22A GND - 0 Ground 0 V
23A X_LCD_LD17 I/O VDD_3V3 Input/Output data 17 to display
24A X_LCD_LD18 I/O VDD_3V3 Input/Output data 18 to display
25A X_LCD_LD19 I/O VDD_3V3 Input/Output data 19 to display
26A X_LCD_LD21 I/O VDD_3V3 Input/Output data 21 to display
27A GND - 0 Ground 0 V
28A #CS0_3V3 O VDD_3V3 Chip Select 0 output
29A #CS1_3V3 O VDD_3V3 Chip Select 1 output
30A #CS4_3V3 O VDD_3V3 Chip Select 4 output
31A EB1_3V3 O VDD_3V3 Active low external enable byte signal that
controls
D[7:0]
32A GND - 0 Ground 0 V
phyCORE-i.MX35
10 PHYTEC Messtechnik GmbH 2010 L-734e_1
33A #OE_3V3 O VDD_3V3 Memory Output Enable
34A LBA_3V3 O VDD_3V3 Load Burst Address
35A BCLK_3V3 O VDD_3V3 Burst Clock
36A A2_3V3 O VDD_3V3 Address-Line A2
37A GND - 0 Ground 0 V
38A A4_3V3 O VDD_3V3 Address-Line A4
39A A5_3V3 O VDD_3V3 Address-Line A5
40A A7_3V3 O VDD_3V3 Address-Line A7
41A A10_3V3 O VDD_3V3 Address-Line A10
42A GND - 0 Ground 0 V
43A A12_3V3 O VDD_3V3 Address-Line A12
44A A13_3V3 O VDD_3V3 Address-Line A13
45A A15_3V3 O VDD_3V3 Address-Line A15
46A A18_3V3 O VDD_3V3 Address-Line A18
47A GND - 0 Ground 0 V
48A A20_3V3 O VDD_3V3 Address-Line A20
49A A21_3V3 O VDD_3V3 Address-Line A21
50A A23_3V3 O VDD_3V3 Address-Line A23
51A D0 I/O VDD_3V3 Data_Bus D0
52A GND - 0 Ground 0 V
53A D2 I/O VDD_3V3 Data_Bus D2
54A D3 I/O VDD_3V3 Data_Bus D3
55A D5 I/O VDD_3V3 Data_Bus D5
56A D8 I/O VDD_3V3 Data_Bus D8
57A GND - 0 Ground 0 V
58A D10 I/O VDD_3V3 Data_Bus D10
59A D11 I/O VDD_3V3 Data_Bus D11
60A D13 I/O VDD_3V3 Data_Bus D13
61A VDD_1V8 - VDD_1V8 1.8V supply voltage
62A GND - 0 Ground 0 V
63A not connected - - Pin left unconnected
64A not connected - - Pin left unconnected
65A not connected - - Pin left unconnected
66A not connected - - Pin left unconnected
67A GND - 0 Ground 0 V
68A not connected - Pin left unconnected
69A X_FEC_TDATA3 O VDD_3V3 Fast Ethernet Transmit Data 3
70A X_FEC_RX_ER
R I VDD_3V3 Fast Ethernet Receive Data Error
71A X_FEC_RDATA2 I VDD_3V3 Fast Ethernet Receive Data 2
72A GND - 0 Ground 0 V
Pin Description
PHYTEC Messtechnik GmbH 2010 L-734e_1 11
73A X_FEC_MDC O VDD_3V3 Fast Ethernet Management Data Clock
74A X_FEC_TX_CLK I VDD_3V3 Fast Ethernet Transmit Clock signal
75A X_FEC_RDATA0 I VDD_3V3 Fast Ethernet Receive Data 0
76A X_FEC_RX_CLK I VDD_3V3 Fast Ethernet Receive Clock signal
77A GND - 0 Ground 0 V
78A X_CSI_D6 I VDD_3V3 Camera Sensor D6
79A X_CSI_D8 I VDD_3V3 Camera Sensor D8
80A X_CSI_D9 I VDD_3V3 Camera Sensor D9
81A X_CSI_D11 I VDD_3V3 Camera Sensor D11
82A GND - 0 Ground 0 V
83A X_CSI_D14 I VDD_3V3 Camera Sensor D14
84A X_CSI_MCLK O VDD_3V3 Camera Sensor Master Clock
85A X_CSI_VSYNC I VDD_3V3 Camera Sensor vertical sync
86A X_CSI_PIXCLK I VDD_3V3 Camera Sensor pixel clock
87A GND - 0 Ground 0 V
88A VDD_3V3 - VDD_3V3 CSI and FEC supply voltage (3.3V)
89A X_FEC_TX_EN O VDD_3V3 Fast Ethernet transmit enable signal
90A X_KEY_COL0 I/O VDD_3V3 Keypad Port Column 0
91A X_KEY_COL1 I/O VDD_3V3 Keypad Port Column 1
92A GND - 0 Ground 0 V
93A X_KEY_COL2 I/O VDD_3V3 Keypad Port Column 2
94A X_KEY_COL3 I/O VDD_3V3 Keypad Port Column 3
95A not connected - - Pin left unconnected
96A X_GPIO2_6 I/O VDD_3V3 GPIO2_6
97A GND - 0 Ground 0 V
98A X_GPIO2_7 I/O VDD_3V3 GPIO2_7
99A X_GPIO2_23 I/O VDD_3V3 GPIO2_23
100A X_GPIO2_24 I/O VDD_3V3 GPIO2_24
phyCORE-i.MX35
12 PHYTEC Messtechnik GmbH 2010 L-734e_1
PIN ROW X1B
PIN # SIGNAL I/O SL DESCRIPTION
1B VDD_ALIVE - VDD_ALIVE VDD-ALIVE from LDO of power-supply (1.2 V)
2B X_VSTBY O VDD_3V3 I/O signal to PMIC
3B X_OWIRE I/O VDD_3V3 One-Wire bus
4B GND - 0 Ground 0 V
5B X_LCD_HSYNC I/O VDD_3V3 Display horizontal synchronization pulse
6B not connected - - Pin left unconnected
7B X_LCD_CONTRAST O VDD_3V3 Contrast control for display
8B X_LCD_CLS O VDD_3V3 CLS signal for display
9B GND - 0 Ground 0 V
10B X_LCD_FPSHIFT O VDD_3V3 Display Shift Clock
11B not connected - - Pin left unconnected
12B not connected - - Pin left unconnected
13B X_LCD_LD1 I/O VDD_3V3 Input/Output data 1 to display
14B GND - 0 Ground 0 V
15B X_LCD_LD4 I/O VDD_3V3 Input/Output data 4 to display
16B X_LCD_LD6 I/O VDD_3V3 Input/Output data 6 to display
17B X_LCD_LD7 I/O VDD_3V3 Input/Output data 7 to display
18B X_LCD_LD9 I/O VDD_3V3 Input/Output data 9 to display
19B GND - 0 Ground 0 V
20B X_LCD_LD12 I/O VDD_3V3 Input/Output data 12 to display
21B X_LCD_LD14 I/O VDD_3V3 Input/Output data 14 to display
22B X_LCD_LD15 I/O VDD_3V3 Input/Output data 15 to display
23B X_LCD_LD16 I/O VDD_3V3 Input/Output data 16 to display
24B GND - 0 Ground 0 V
25B X_LCD_LD20 I/O VDD_3V3 Input/Output data 20 to display
26B X_LCD_LD22 I/O VDD_3V3 Input/Output data 22 to display
27B X_LCD_LD23 I/O VDD_3V3 Input/Output data 23 to display
28B #CS3_3V3 O VDD_3V3 Chip Select 3 output
29B GND - 0 Ground 0 V
30B #CS5_3V3 O VDD_3V3 Chip Select 5 output
31B EB0_3V3 O VDD_3V3 WEIM enable byte signal
32B #RW_3V3 O VDD_3V3 WEIM Read/Write signal
33B ECB_WAIT_3V3 I VDD_3V3 WEIM End Current Burst / Wait signal
34B GND - 0 Ground 0 V
35B A0_3V3 O VDD_3V3 Address-Line A0
36B A1_3V3 O VDD_3V3 Address-Line A1
37B A3_3V3 O VDD_3V3 Address-Line A3
38B A6_3V3 O VDD_3V3 Address-Line A6
/