GE EPM 6000, EPM 6000 Multi-function Power Metering System User manual

  • Hello! I am an AI chatbot trained to assist you with the GE EPM 6000 User manual. I’ve already reviewed the document and can help you find the information you need or explain it in simple terms. Just ask your questions, and providing more details will help me assist you more effectively!
EPM 6000 Multi-function Power
Metering System
Chapter 1:
GE Consumer & Industrial
Multilin
EPM 6000
Instruction Manual
Software Revision: 4.5
Manual P/N: 1601-0215-A4
Manual Order Code: GEK-106558C
Copyright © 2007 GE Multilin
GE Multilin
215 Anderson Avenue, Markham, Ontario
Canada L6E 1B3
Tel: (905) 294-6222 Fax: (905) 201-2098
Internet:
http://www.GEmultilin.com
*1601-0215-A4*
ISO9001:2000
G
E
M
U
L
T
I
L
I
N
R
E
G
I
S
T
E
R
E
D
GE Multilin's Quality
Management System is
registered to ISO9001:2000
QMI # 005094
LISTED
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE TOC–1
Table of Contents
1: OVERVIEW INTRODUCTION ................................................................................................................................ 1-1
D
ESCRIPTION ........................................................................................................................ 1-1
H
IGHLIGHTS ......................................................................................................................... 1-1
FEATURES ............................................................................................................................................ 1-3
U
NIVERSAL VOLTAGE INPUTS ............................................................................................ 1-3
C
URRENT INPUTS ................................................................................................................. 1-3
U
TILITY PEAK DEMAND ....................................................................................................... 1-3
M
EASURED VALUES ............................................................................................................ 1-4
ORDERING ........................................................................................................................................... 1-5
O
RDER CODES ..................................................................................................................... 1-5
SPECIFICATIONS ............................................................................................................................... 1-6
I
NPUTS/OUTPUTS ................................................................................................................ 1-6
M
ETERING ............................................................................................................................. 1-6
E
NVIRONMENTAL ................................................................................................................. 1-7
C
OMMUNICATIONS .............................................................................................................. 1-7
M
ECHANICAL PARAMETERS ................................................................................................ 1-7
A
PPROVALS ........................................................................................................................... 1-8
2: ELECTRICAL
BACKGROUND
THREE-PHASE POWER MEASUREMENT ................................................................................. 2-1
D
ESCRIPTION ........................................................................................................................ 2-1
THREE-PHASE SYSTEM CONFIGURATIONS ........................................................................... 2-2
D
ESCRIPTION ........................................................................................................................ 2-2
W
YE CONNECTION .............................................................................................................. 2-2
D
ELTA CONNECTION ........................................................................................................... 2-4
B
LONDELL'S THEOREM AND THREE-PHASE MEASUREMENT ........................................ 2-5
POWER, ENERGY, AND DEMAND .............................................................................................. 2-8
D
ESCRIPTION ........................................................................................................................ 2-8
P
OWER .................................................................................................................................. 2-8
E
NERGY ................................................................................................................................. 2-8
D
EMAND ...............................................................................................................................2-10
REACTIVE ENERGY AND POWER FACTOR ............................................................................. 2-12
R
EAL, REACTIVE, AND APPARENT POWER ........................................................................ 2-12
P
OWER FACTOR ................................................................................................................... 2-13
HARMONIC DISTORTION .............................................................................................................. 2-14
H
ARMONICS OF A NON-SINUSOIDAL WAVEFORM ......................................................... 2-14
I
NDUCTIVE AND CAPACITIVE IMPEDANCE ......................................................................... 2-15
V
OLTAGE AND CURRENT MONITORING ............................................................................ 2-15
W
AVEFORM CAPTURE ......................................................................................................... 2-16
POWER QUALITY .............................................................................................................................. 2-17
D
ESCRIPTION ........................................................................................................................ 2-17
3: INSTALLATION MECHANICAL INSTALLATION ..................................................................................................... 3-1
D
IMENSIONS ......................................................................................................................... 3-1
ANSI I
NSTALLATION STEPS ............................................................................................... 3-2
DIN I
NSTALLATION STEPS .................................................................................................. 3-3
ELECTRICAL INSTALLATION ......................................................................................................... 3-5
TOC–2 EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE
INSTALLATION CONSIDERATIONS .......................................................................................3-5
CT L
EADS TERMINATED TO METER ................................................................................... 3-6
CT L
EADS PASS-THROUGH (NO METER TERMINATION) ................................................ 3-6
Q
UICK CONNECT CRIMP CT TERMINATIONS ................................................................... 3-7
V
OLTAGE AND POWER SUPPLY CONNECTIONS .............................................................. 3-7
G
ROUND CONNECTIONS .................................................................................................... 3-8
WIRING DIAGRAMS ......................................................................................................................... 3-9
D
ESCRIPTION ........................................................................................................................ 3-9
W
YE, 4-WIRE WITH NO PTS AND 3 CTS, 3 ELEMENT ..................................................3-10
W
YE, 4-WIRE WITH NO PTS AND 3 CTS, 2.5 ELEMENT .............................................. 3-11
W
YE, 4-WIRE WITH 3 PTS AND 3 CTS, 3 ELEMENT .................................................... 3-12
W
YE, 4-WIRE WITH 2 PTS AND 3 CTS, 2.5 ELEMENT ................................................. 3-13
D
ELTA, 3-WIRE WITH NO PTS AND 2 CTS ..................................................................... 3-14
D
ELTA, 3-WIRE WITH 2 PTS AND 2 CTS ........................................................................ 3-15
C
URRENT-ONLY MEASUREMENT (THREE-PHASE) ..........................................................3-16
C
URRENT-ONLY MEASUREMENT (DUAL-PHASE) ............................................................ 3-17
C
URRENT-ONLY MEASUREMENT (SINGLE-PHASE) ......................................................... 3-18
COMMUNICATIONS SETUP .......................................................................................................... 3-19
D
ESCRIPTION ........................................................................................................................ 3-19
I
RDA COM1 PORT ............................................................................................................. 3-19
RS485 COM2 P
ORT ......................................................................................................... 3-19
4: USING THE METER FRONT PANEL INTERFACE ............................................................................................................ 4-1
D
ESCRIPTION ........................................................................................................................ 4-1
F
ACEPLATE ELEMENTS ........................................................................................................ 4-1
F
ACEPLATE BUTTONS .......................................................................................................... 4-2
P
ERCENTAGE OF LOAD BAR ...............................................................................................4-3
W
ATT-HOUR ACCURACY TESTING (VERIFICATION) ........................................................ 4-4
CONFIGURING THE METER VIA THE FRONT PANEL .......................................................... 4-5
O
VERVIEW ............................................................................................................................ 4-5
S
TART UP .............................................................................................................................. 4-5
M
AIN MENU ......................................................................................................................... 4-6
R
ESET MODE AND PASSWORD ENTRY .............................................................................4-6
CHANGING SETTINGS IN CONFIGURATION MODE ........................................................... 4-9
D
ESCRIPTION ........................................................................................................................ 4-9
C
ONFIGURING THE SCROLL FEATURE ............................................................................... 4-9
P
ROGRAMMING THE CONFIGURATION MODE SCREENS ................................................ 4-10
C
ONFIGURING THE CT SETTING ........................................................................................ 4-11
C
ONFIGURING THE PT SETTING ........................................................................................4-12
C
ONFIGURING THE CONNECTION SETTING ...................................................................... 4-13
C
ONFIGURING THE COMMUNICATION PORT SETTING .................................................... 4-14
OPERATING MODE ........................................................................................................................... 4-17
D
ESCRIPTION ........................................................................................................................ 4-17
5: COMMUNICATIONS MODBUS COMMUNICATIONS ..................................................................................................... 5-1
M
EMORY MAP DESCRIPTION ............................................................................................. 5-1
M
EMORY MAP ......................................................................................................................5-1
M
ODBUS MEMORY MAP NOTES ....................................................................................... 5-7
M
ODBUS MEMORY MAP DATA FORMATS ........................................................................ 5-9
DNP POINT MAPPING ..................................................................................................................... 5-10
DNP P
OINT MAPS ..............................................................................................................5-10
DNP P
OINT MAP NOTES ................................................................................................... 5-12
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE TOC–3
DNP IMPLEMENTATION ................................................................................................................. 5-13
O
VERVIEW ............................................................................................................................ 5-13
D
ATA LINK LAYER ................................................................................................................ 5-13
T
RANSPORT LAYER .............................................................................................................. 5-13
A
PPLICATION LAYER ............................................................................................................ 5-14
DNP OBJECTS AND VARIATIONS ............................................................................................... 5-15
D
ESCRIPTION ........................................................................................................................ 5-15
B
INARY OUTPUT STATUS (OBJECT 10, VARIATION 2) ................................................... 5-15
C
ONTROL RELAY OUTPUT (OBJECT 12, VARIATION 1) .................................................. 5-15
32-B
IT BINARY COUNTER WITHOUT FLAG (OBJECT 20, VARIATION 4) .................... 5-16
16-B
IT ANALOG INPUT WITHOUT FLAG (OBJECT 30, VARIATION 5) ......................... 5-16
C
LASS 0 DATA (OBJECT 60, VARIATION 1) ..................................................................... 5-17
I
NTERNAL INDICATIONS (OBJECT 80, VARIATION 1) ...................................................... 5-17
6: MISCELLANEOUS NAVIGATION MAPS ......................................................................................................................... 6-1
I
NTRODUCTION ..................................................................................................................... 6-1
M
AIN MENU SCREENS ........................................................................................................ 6-2
O
PERATING MODE SCREENS ............................................................................................. 6-3
R
ESET MODE SCREENS ....................................................................................................... 6-4
C
ONFIGURATION MODE SCREENS .................................................................................... 6-5
REVISION HISTORY .......................................................................................................................... 6-6
R
ELEASE DATES ................................................................................................................... 6-6
C
HANGES TO THE MANUAL ............................................................................................... 6-6
WARRANTY ......................................................................................................................................... 6-8
GE M
ULTILIN WARRANTY .................................................................................................. 6-8
TOC–4 EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE 1–1
EPM 6000 Multi-function Power
Metering System
Chapter 1: Overview
GE Consumer & Industrial
Multilin
Over view
1.1 Introduction
1.1.1 Description
The EPM 6000 is a multifunction power meter designed to be used in electrical substations,
panel boards and as a power meter for OEM equipment. The unit provides multifunction
measurement of electrical parameters.
The unit is designed with advanced measurement capabilities, allowing it to achieve high
performance accuracy. The EPM 6000 is specified as a 0.2% class energy meter for billing
applications as well as a highly accurate panel indication meter.
The EPM 6000 provides a host of additional capabilities, including standard RS485 Modbus
Protocol and an IrDA port remote interrogation.
1.1.2 Highlights
The following EPM 6000 features are detailed in this manual:
0.2% class revenue certifiable energy and demand metering
Meets ANSI C12.20 (0.2%) and IEC 687 (0.2%) classes
Multifunction measurement including voltage, current, power, frequency, energy
Percentage of load bar for analog meter perception
Easy-to-use faceplate programming
IrDA port for PDA remote read
RS485 Modbus communications
1–2 EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE
CHAPTER 1: OVERVIEW
FIGURE 1–1: EPM 6000 Highlights
CHAPTER 1: OVERVIEW
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE 1–3
1.2 Features
1.2.1 Universal Voltage Inputs
Voltage Inputs allow measurement to 416 V line-to-neutral and 721 V line-to-line. This
insures proper meter safety when wiring directly to high voltage systems. One unit will
perform to specification on 69 V, 120 V, 230 V, 277 V, and 347 V systems.
1.2.2 Current Inputs
The EPM 6000 current inputs use a unique dual input method.
Method 1 – CT Pass Through: The CT passes directly through the meter without
any physical termination on the meter. This insures that the meter cannot be a
point of failure on the CT circuit. This is preferable for utility users when sharing
relay class CTs. No burden is added to the secondary CT circuit.
Method 2 – Current “Gills”: This unit additionally provides ultra-rugged
termination pass-through bars that allow CT leads to be terminated on the meter.
This, too, eliminates any possible point of failure at the meter. This is a preferred
technique for insuring that relay class CT integrity is not compromised (the CT will
not open in a fault condition).
FIGURE 1–2: Current Input Connections
1.2.3 Utility Peak Demand
The EPM 6000 provides user-configured Block (fixed) or Rolling window demand. This
feature allows you to set up a customized demand profile. Block window demand is
demand used over a user-defined demand period (usually 5, 15, or 30 minutes). Rolling
window demand is a fixed window demand that moves for a user-specified subinterval
period. For example, a 15-minute demand using 3 subintervals and providing a new
demand reading every 5 minutes, based on the last 15 minutes.
1–4 EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE
CHAPTER 1: OVERVIEW
Utility demand features can be used to calculate kW, kvar, kVA and PF readings. All other
parameters offer maximum and minimum capability over the user-selectable averaging
period. Voltage provides an instantaneous maximum and minimum reading which
displays the highest surge and lowest sag seen by the meter.
1.2.4 Measured Values
The EPM 6000 provides the following measured values all in real time and some
additionally as average, maximum, and minimum values.
Table 1–1: EPM 6000 Measured Values
Measured Values Real Time Average Maximum Minimum
Voltage L-N XXX
Voltage L-L XXX
Current per phase XXXX
Watts XXXX
vars XXXX
VA XXXX
Power Factor (PF) XXXX
Positive watt-hours X
Negative watt-hours X
Net watt-hours X
Positive var-hours X
Negative var-hours X
Net var-hours X
VA-hours X
Frequency XXX
%THD XXX
Voltage angles X
Current angles X
% of load bar X
CHAPTER 1: OVERVIEW
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE 1–5
1.3 Ordering
1.3.1 Order Codes
The order codes for the EPM 6000 are indicated below.
For example, to order an EPM 6000 for 60 Hz system with a 1 A secondary CT input and no
THD or pulse output option, select order code PL6000-6-1A-0. The standard unit includes
display, all current/voltage/power/frequency/energy counters, percent load bar, RS485,
and IrDA communication ports.
Table 1–2: EPM 6000 Order Codes
PL6000 * * *
Base Unit
PL6000 || |
EPM 6000 Power Metering System
System
Frequency
5 | |
50 Hz AC frequency system
6 | |
60 Hz AC frequency system
Current Input
1A |
1 A secondary CT
5A |
5 A secondary CT
THD and Pulse Output
0
No THD or pulse output option
THD
THD, limit alarms, and 1 KYZ pulse output
1–6 EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE
CHAPTER 1: OVERVIEW
1.4 Specifications
1.4.1 Inputs/Outputs
POWER SUPPLY
Range:..................................................................D2 Option: Universal, 90 to 265 V AC at 50/60Hz, or 100 to
370 V DC
D Option: 18 to 60 V DC
Power consumption:.....................................5 VA, 3.5 W
VOLTAGE INPUTS (MEASUREMENT CATEGORY III)
Range:..................................................................Universal, Auto-ranging up to 416 V AC L-N, 721 V AC L-L
Supported hookups:......................................3-element Wye, 2.5-element Wye, 2-element Delta,
4-wire Delta
Input impedance:...........................................1 MOhm/phase
Burden:................................................................0.0144 VA/phase at 120 Volts
Pickup voltage: ................................................10 V AC
Connection:.......................................................Screw terminal (see Voltage Connection on page 3–8)
Maximum input wire gauge: ....................AWG #12 / 2.5 mm
2
Fault withstand: ..............................................Meets IEEE C37.90.1
Reading:..............................................................Programmable full-scale to any PT ratio
CURRENT INPUTS
Class 10:..............................................................5 A nominal, 10 A maximum
Class 2: ................................................................1 A nominal, 2 A maximum
Burden:................................................................0.005 VA per phase maximum at 11 A
Pickup current:.................................................0.1% of nominal
Connections:.....................................................O or U lug (see CT Leads Terminated to Meter on page 3–
6);
Pass-through wire, 0.177" / 4.5 mm maximum diameter
(see Pass-Through Wire Electrical Connection on page
3–7);
Quick connect, 0.25" male tab
(see Quick Connect Electrical Connection on page 3–7)
Fault Withstand:..............................................100 A / 10 seconds, 300 A / 3 seconds, 500 A / 1 second
Reading:..............................................................Programmable full-scale to any CT ratio
1.4.2 Metering
MEASUREMENT METHODS
Voltage and current:.....................................true RMS
Power:..................................................................sampling at 400+ samples/cycle on all channels
measured; readings simultaneously
A/D conversion:...............................................6 simultaneous 24-bit analog-to-digital converters
UPDATE RATE
Watts, vars, and VA: ......................................100 ms (10 times per second)
All other parameters:....................................1 second
CHAPTER 1: OVERVIEW
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE 1–7
ACCURACY
NOTE: Typical results are more accurate.
1.4.3 Environmental
TEMPERATURE AND HUMIDITY
Storage:...............................................................–40 to 85°C
Operating:..........................................................–30 to 70°C
Humidity:............................................................up to 95% RH, non-condensing
Faceplate rating: ............................................NEMA 12 (water resistant), mounting gasket included
1.4.4 Communications
COMMUNICATIONS FORMAT
Types:...................................................................RS485 port through back plate
IrDA port through face plate
COMMUNICATIONS PORTS
Protocol:..............................................................Modbus RTU, Modbus ASCII, DNP 3.0
Baud rate: ..........................................................9600 to 57600 bps
Port address: ....................................................001 to 247
Data format:.....................................................8 bits, no parity
1.4.5 Mechanical Parameters
DIMENSIONS
Size:.......................................................................4.25" × 4.82" × 4.85" (L × W × H)
105.4 mm × 123.2 mm × 123.2 mm (L × W × H)
Mounting:...........................................................mounts in 92 mm square DIN or ANSI C39.1 4-inch round
cut-out
Weight:................................................................2 pounds / 0.907 kg
Shipping..............................................................ships in 6-inch / 152.4 mm cube container
Measured Parameters Display Range Accuracy
Voltage L-N 0 to 9999 kV or scalable 0.1% of reading
Voltage L-L 0 to 9999 V or kV scalable 0.1% of reading
Current 0 to 9999 A or kA 0.1% of reading
+/– Watts 0 to 9999 W, kW, or MW 0.2% of reading
+/– Wh 5 to 8 digits (programmable) 0.2% of reading
+/– vars 0 to 9999 vars, kvars, Mvars 0.2% of reading
+/– varh 5 to 8 digits (programmable) 0.2% of reading
VA 0 to 9999 VA, kVA, MVA 0.2% of reading
VAh 5 to 8 digits (programmable) 0.2% of reading
Power Factor (PF) ±0.5 to 1.0 0.2% of reading
Frequency 45 to 65 Hz 0.01 Hz
% THD 0 to 100% 2.0% F.S.
% Load Bar 10 digit resolution scalable 1 to 120% of reading
1–8 EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE
CHAPTER 1: OVERVIEW
1.4.6 Approvals
TYPE TESTING
IEC 687 (0.2% accuracy)
ANSI C12.20 (0.2% accuracy)
ANSI (IEEE) C37.90.1: ....................................Surge Withstand
ANSI C62.41 (burst)
IEC 1999-4-2: ...................................................ESD
IEC 1000-4-3: ...................................................Radiated Immunity
IEC 1000-4-4: ...................................................Fast Transient
IEC 1000-4-5: ...................................................Surge Immunity
COMPLIANCE
ISO: ........................................................................manufactured to an ISO9001 registered program
UL:..........................................................................UL listed (file E250818)
CSA:.......................................................................Certified per: C22.2 No.1010.1 Electrical and Electronic
Measuring and Testing Equipment
CE:..........................................................................conforms to EN 55011 / EN 50082
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE 2–1
EPM 6000 Multi-function Power
Metering System
Chapter 2: Electrical Background
GE Consumer & Industrial
Multilin
Electric al Background
2.1 Three-Phase Power Measurement
2.1.1 Description
This introduction to three-phase power and power measurement is intended to provide
only a brief overview of the subject. The professional meter engineer or meter technician
should refer to more advanced documents such as the EEI Handbook for Electricity
Metering and the application standards for more in-depth and technical coverage of the
subject.
2–2 EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE
CHAPTER 2: ELECTRICAL BACKGROUND
2.2 Three-Phase System Configurations
2.2.1 Description
Three-phase power is most commonly used in situations where large amounts of power
will be used because it is a more effective way to transmit the power and because it
provides a smoother delivery of power to the end load. There are two commonly used
connections for three-phase power, a wye connection or a delta connection. Each
connection has several different manifestations in actual use. When attempting to
determine the type of connection in use, it is a good practice to follow the circuit back to
the transformer that is serving the circuit. It is often not possible to conclusively determine
the correct circuit connection simply by counting the wires in the service or checking
voltages. Checking the transformer connection will provide conclusive evidence of the
circuit connection and the relationships between the phase voltages and ground.
2.2.2 Wye Connection
The wye connection is so called because when you look at the phase relationships and the
winding relationships between the phases it looks like a wye (Y). The following figure
depicts the winding relationships for a wye-connected service. In a wye service the neutral
(or center point of the wye) is typically grounded. This leads to common voltages of 208/
120 and 480/277 (where the first number represents the phase-to-phase voltage and the
second number represents the phase-to-ground voltage).
FIGURE 2–1: Three-Phase Wye Winding
The three voltages are electrically separated by 120°. Under balanced load conditions with
unity power factor, the currents are also separated by 120°. However, unbalanced loads
and other conditions can cause the currents to depart from the ideal 120° separation.
Three-phase voltages and currents are usually represented with a phasor diagram. A
phasor diagram for the typical connected voltages and currents is shown below.
Ia
Vbn
A
B
C
Van
Vcn
N
CHAPTER 2: ELECTRICAL BACKGROUND
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE 2–3
FIGURE 2–2: Three-Phase Voltage and Current Phasors for Wye Winding
The phasor diagram shows the 120° angular separation between the phase voltages. The
phase-to-phase voltage in a balanced three-phase wye system is 1.732 times the phase-
to-neutral voltage. The center point of the wye is tied together and is typically grounded.
The following table indicates the common voltages used in the United States for wye-
connected systems.
Usually, a wye-connected service will have four wires: three wires for the phases and one
for the neutral. The three-phase wires connect to the three phases. The neutral wire is
typically tied to the ground or center point of the wye (refer to the Three-Phase Wye
Winding diagram above).
In many industrial applications the facility will be fed with a four-wire wye service but only
three wires will be run to individual loads. The load is then often referred to as a delta-
connected load but the service to the facility is still a wye service; it contains four wires if
you trace the circuit back to its source (usually a transformer). In this type of connection
the phase to ground voltage will be the phase-to-ground voltage indicated in the table
above, even though a neutral or ground wire is not physically present at the load. The
transformer is the best place to determine the circuit connection type because this is a
location where the voltage reference to ground can be conclusively identified.
Table 2–1: Common Phase Voltages on Wye Services
Phase-to-Ground Voltage Phase-to-Phase Voltage
120 volts 208 volts
277 volts 480 volts
2400 volts 4160 volts
7200 volts 12470 volts
7620 volts 13200 volts
Van
Vcn
Vbn
Ic
Ib
Ia
2–4 EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE
CHAPTER 2: ELECTRICAL BACKGROUND
2.2.3 Delta Connection
Delta connected services may be fed with either three wires or four wires. In a three-phase
delta service the load windings are connected from phase-to-phase rather than from
phase-to-ground. The following figure shows the physical load connections for a delta
service.
FIGURE 2–3: Three-Phase Delta Winding Relationship
In this example of a delta service, three wires will transmit the power to the load. In a true
delta service, the phase-to-ground voltage will usually not be balanced because the
ground is not at the center of the delta.
The following diagram shows the phasor relationships between voltage and current on a
three-phase delta circuit.
In many delta services, one corner of the delta is grounded. This means the phase to
ground voltage will be zero for one phase and will be full phase-to-phase voltage for the
other two phases. This is done for protective purposes.
FIGURE 2–4: Three-Phase Voltage and Current Phasors for Delta Winding
Ia
Ica
Iab
Ib
Ibc
Ic
Vab
Vbc
A
B
C
Vca
Vbc
Vca
Vab
Ic
Ib
Ia
CHAPTER 2: ELECTRICAL BACKGROUND
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE 2–5
Another common delta connection is the four-wire, grounded delta used for lighting loads.
In this connection the center point of one winding is grounded. On a 120/240 volt, four-
wire, grounded delta service the phase-to-ground voltage would be 120 volts on two
phases and 208 volts on the third phase. The phasor diagram for the voltages in a three-
phase, four-wire delta system is shown below.
FIGURE 2–5: Three-Phase, Four-Wire Delta Phasors
2.2.4 Blondell's Theorem and Three-Phase Measurement
In 1893 an engineer and mathematician named Andre E. Blondell set forth the first
scientific basis for poly phase metering. His theorem states:
If energy is supplied to any system of conductors through N wires, the total power in the
system is given by the algebraic sum of the readings of N watt-meters so arranged that
each of the N wires contains one current coil, the corresponding potential coil being
connected between that wire and some common point. If this common point is on one
of the N wires, the measurement may be made by the use of N-1 wattmeters.
The theorem may be stated more simply, in modern language:
In a system of N conductors, N – 1 meter elements will measure the power or energy
taken provided that all the potential coils have a common tie to the conductor in which
there is no current coil.
Three-phase power measurement is accomplished by measuring the three individual
phases and adding them together to obtain the total three phase value. In older analog
meters, this measurement was made using up to three separate elements. Each element
combined the single-phase voltage and current to produce a torque on the meter disk. All
three elements were arranged around the disk so that the disk was subjected to the
combined torque of the three elements. As a result the disk would turn at a higher speed
and register power supplied by each of the three wires.
According to Blondell's Theorem, it was possible to reduce the number of elements under
certain conditions. For example, a three-phase, three-wire delta system could be correctly
measured with two elements (two potential coils and two current coils) if the potential coils
were connected between the three phases with one phase in common.
Vca
Vab
Vbc
Vnc
Vbn
120 V
120 V
2–6 EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE
CHAPTER 2: ELECTRICAL BACKGROUND
In a three-phase, four-wire wye system it is necessary to use three elements. Three voltage
coils are connected between the three phases and the common neutral conductor. A
current coil is required in each of the three phases.
In modern digital meters, Blondell's Theorem is still applied to obtain proper metering. The
difference in modern meters is that the digital meter measures each phase voltage and
current and calculates the single-phase power for each phase. The meter then sums the
three phase powers to a single three-phase reading.
Some digital meters calculate the individual phase power values one phase at a time. This
means the meter samples the voltage and current on one phase and calculates a power
value. Then it samples the second phase and calculates the power for the second phase.
Finally, it samples the third phase and calculates that phase power. After sampling all three
phases, the meter combines the three readings to create the equivalent three-phase
power value. Using mathematical averaging techniques, this method can derive a quite
accurate measurement of three-phase power.
More advanced meters actually sample all three phases of voltage and current
simultaneously and calculate the individual phase and three-phase power values. The
advantage of simultaneous sampling is the reduction of error introduced due to the
difference in time when the samples were taken.
Blondell's Theorem is a derivation that results from Kirchhoff's Law. Kirchhoff's Law states
that the sum of the currents into a node is zero. Another way of stating the same thing is
that the current into a node (connection point) must equal the current out of the node. The
law can be applied to measuring three-phase loads. The figure below shows a typical
connection of a three-phase load applied to a three-phase, four-wire service. Kirchhoff's
Laws hold that the sum of currents A, B, C and N must equal zero or that the sum of
currents into Node “n” must equal zero.
FIGURE 2–6: Three-Phase Load Illustrating Kirchhoff’s Law and Blondell’s Theorem
Phase B
Phase C
Phase A
A
B
C
N
Node "n"
/