HP 49g+ Graphing Calculator User guide

Type
User guide
hp 49g+ graphing calculator
user’s guide
H
Edition 4
HP part number F2228-90006
Notice
REGISTER YOUR PRODUCT AT: www.register.hp.com
THIS MANUAL AND ANY EXAMPLES CONTAINED HEREIN ARE
PROVIDED “AS IS” AND ARE SUBJECT TO CHANGE WITHOUT
NOTICE. HEWLETT-PACKARD COMPANY MAKES NO WARRANTY
OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS FOR A
PARTICULAR PURPOSE.
HEWLETT-PACKARD CO. SHALL NOT BE LIABLE FOR ANY ERRORS
OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE
OF THIS MANUAL OR THE EXAMPLES CONTAINED HEREIN.
© Copyright 2003 Hewlett-Packard Development Company, L.P.
Reproduction, adaptation, or translation of this manual is prohibited without
prior written permission of Hewlett-Packard Company, except as allowed
under the copyright laws.
Hewlett-Packard Company
4995 Murphy Canyon Rd,
Suite 301
San Diego,CA 92123
Printing History
Edition 4 April 2004
Preface
You have in your hands a compact symbolic and numerical computer that will
facilitate calculation and mathematical analysis of problems in a variety of
disciplines, from elementary mathematics to advanced engineering and
science subjects. Although referred to as a calculator, because of its
compact format resembling typical hand-held calculating devices, the hp
49g+ should be thought of as a graphics/programmable hand-held computer.
The hp 49g+ can be operated in two different calculating modes, the Reverse
Polish Notation (RPN) mode and the Algebraic (ALG) mode (see page 1-11 in
user’s guide for additional details). The RPN mode was incorporated into
calculators to make calculations more efficient. In this mode, the operands in
an operation (e.g., ‘2’ and ‘3’ in the operation ‘2+3’) are entered into the
calculator screen, referred to as the stack, and then the operator (e.g., ‘+’ in
the operation ‘2+3’) is entered to complete the operation. The ALG mode, on
the other hand, mimics the way you type arithmetic expressions in paper.
Thus, the operation ‘2+3’, in ALG mode, will be entered in the calculator by
pressing the keys ‘2’, ‘+’, and ‘3, in that order. To complete the operation
we use the ENTER key. Examples of applications of the different functions
and operations in this calculator are illustrated in this user’s guide in both
modes.
This guide contains examples that illustrate the use of the basic calculator
functions and operations. The chapters in this user’s guide are organized by
subject in order of difficulty. Starting with the setting of calculator modes and
display options, and continuing with real and complex number calculations,
operations with lists, vectors, and matrices, detailed examples of graph
applications, use of strings, basic programming, graphics programming,
string manipulation, advanced calculus and multivariate calculus applications,
advanced differential equations applications (including Laplace transform,
and Fourier series and transforms), and probability and statistic applications.
For symbolic operations the calculator includes a powerful Computer
Algebraic System (CAS) that lets you select different modes of operation, e.g.,
complex numbers vs. real numbers, or exact (symbolic) vs. approximate
(numerical) mode. The display can be adjusted to provide textbook-type
expressions, which can be useful when working with matrices, vectors,
fractions, summations, derivatives, and integrals. The high-speed graphics of
the calculator are very convenient for producing complex figures in very little
time.
Thanks to the infrared port and the USB cable available with your calculator,
you can connect your calculator with other calculators or computers. The
high-speed connection through infrared or USB allows the fast and efficient
exchange of programs and data with other calculators or computers. The
calculator provides a flash memory card port to facilitate storage and
exchange of data with other users.
The programming capabilities of the calculator allow you or other users to
develop efficient applications for specific purposes. Whether it is advanced
mathematical applications, specific problem solution, or data logging, the
programming languages available in your calculator make it into a very
versatile computing device.
We hope your calculator will become a faithful companion for your school
and professional applications.
Page TOC-1
Table of contents
Chapter 1 - Getting started, 1-1
Basic Operations, 1-1
Batteries, 1-1
Turning the calculator on and off, 1-2
Adjusting the display contrast, 1-2
Contents of the calculator’s display, 1-2
Menus, 1-3
SOFT menus vs. CHOOSE boxes, 1-4
Selecting SOFT menus or CHOOSE boxes, 1-5
The TOOL menu, 1-6
Setting time and date, 1-7
Introducing the calculator’s keyboard, 1-10
Setting calculator’s mode, 1-12
Operating mode, 1-13
Number format and decimal dot or comma, 1-17
Angle measure, 1-22
Coordinate system, 1-22
Beep, Key Click, and Last Stack, 1-24
Selecting CAS settings, 1-25
Selecting Display modes, 1-25
Selecting the display font, 1-26
Selecting properties of the line editor, 1-27
Selecting properties of the Stack, 1-27
Selecting properties of the Equation Writer (EQW), 1-28
Selecting the size of the header, 1-29
Selecting the clock display, 1-29
Chapter 2 - Introducing the calculator, 2-1
Calculator objects, 2-1
Editing expressions in the screen, 2-3
Creating arithmetic expressions, 2-3
Editing arithmetic expressions, 2-6
Creating algebraic expressions, 2-7
Page TOC-2
Editing algebraic expressions, 2-8
Using the Equation Writer (EQW) to create expressions, 2-10
Creating arithmetic expressions, 2-11
Editing arithmetic expressions, 2-16
Creating algebraic expressions, 2-19
Editing algebraic expressions, 2-20
Creating and editing summations, derivatives, and integrals, 2-28
Organizing data in the calculator, 2-32
Functions for manipulation of variables, 2-33
The HOME directory, 2-34
The CASDIR sub-directory, 2-35
Typing directory and variable names, 2-37
Creating sub-directories, 2-38
Moving among sub-directories, 2-42
Deleting sub-directories, 2-42
Variables, 2-46
Creating variables, 2-46
Checking variable contents, 2-51
Replacing the contents of variables, 2-53
Copying variables, 2-54
Reordering variables in a directory, 2-57
Moving variables using the FILES menu, 2-58
Deleting variables, 2-59
UNDO and CMD functions, 2-61
Flags, 2-62
Example of flag setting: general solution vs. principal value, 2-63
Other flags of interest, 2-64
CHOOSE boxes vs. SOFT menus, 2-65
Selected CHOOSE boxes, 2-66
Chapter 3 - Simple calculations with real numbers, 3-1
Checking calculator settings, 3-1
Checking calculator mode, 3-2
Real number calculations, 3-2
Changing sing of a number, variable, or expression, 3-3
The inverse function, 3-3
Page TOC-3
Addition, subtraction, multiplication, division, 3-3
Using parentheses, 3-4
Absolute value function, 3-4
Squares and square roots, 3-5
Powers and roots, 3-5
Base-10 logarithms and powers of 10, 3-5
Using powers of 10 in entering data, 3-6
Natural logarithms and exponential function, 3-6
Trigonometric functions, 3-6
Inverse trigonometric functions, 3-6
Differences between functions and operators, 3-7
Real number functions in the MTH menu, 3-7
Hyperbolic functions and their inverses, 3-9
Real number functions, 3-11
Special functions, 3-14
Calculator constants, 3-16
Operation with units, 3-17
The UNITS menu, 3-17
Available units, 3-18
Converting to base units, 3-21
Attaching units to numbers, 3-22
Operations with units, 3-25
Units manipulation tools, 3-27
Physical constants in the calculator, 3-28
Special physical functions, 3-31
Function ZFACTOR, 3-32
Function F0λ, 3-32
Function SIDENS, 3-32
Function TDELTA, 3-33
Function TINC, 3-33
Defining and using functions, 3-33
Functions defined by more than one expression, 3-35
The IFTE function, 3-35
Combined IFTE functions, 3-36
Page TOC-4
Chapter 4 - Calculations with complex numbers, 4-1
Definitions, 4-1
Setting the calculator to COMPLEX mode, 4-1
Entering complex numbers, 4-2
Polar representation of a complex number, 4-3
Simple operations with complex numbers, 4-4
Changing sign of a complex number, 4-4
Entering the unit imaginary number, 4-5
The CMPLX menus, 4-5
CMPLX menu through the MTH menu, 4-5
CMPLX menu in keyboard, 4-7
Functions applied to complex numbers, 4-8
Functions from the MTH menu, 4-8
Function DROITE: equation of a straight line, 4-9
Chapter 5 - Algebraic and arithmetic operations, 5-1
Entering algebraic objects, 5-1
Simple operations with algebraic objects, 5-2
Functions in the ALG menu, 5-3
COLLECT, 5-5
EXPAND, 5-5
FACTOR, 5-5
LNCOLLECT, 5-5
LIN, 5-5
PARTFRAC, 5-5
SOLVE, 5-5
SUBST, 5-5
TEXPAND, 5-5
Other forms of substitution in algebraic expressions, 5-6
Operations with transcendental functions, 5-7
Expansion and factoring using log-exp functions, 5-8
Expansion and factoring using trigonometric functions, 5-8
Functions in the ARITHMETIC menu, 5-9
DIVIS, 5-10
FACTORS, 5-10
Page TOC-5
LGCD, 5-10
PROPFRAC, 5-10
SIMP2, 5-10
INTEGER menu, 5-10
POLYNOMIAL menu, 5-11
MODULO menu, 5-12
Applications of the ARITHMETIC menu, 5-12
Modular arithmetic, 5-12
Finite arithmetic in the calculator, 5-15
Polynomials, 5-18
Modular arithmetic with polynomials, 5-19
The CHINREM function, 5-19
The EGCD function, 5-19
The GCD function, 5-19
The HERMITE function, 5-20
The HORNER function, 5-20
The variable VX, 5-20
The LAGRANGE function, 5-21
The LCM function, 5-21
The LEGENDRE function, 5-22
The PCOEF function, 5-22
The PROOT function, 5-22
The PTAYL function, 5-22
The QUOTIENT and REMAINDER functions, 5-23
The EPSX0 function and the CAS variable EPS, 5-23
The PEVAL function, 5-23
The TCHEBYCHEFF function, 5-24
Fractions, 5-24
The SIMP2 function, 5-24
The PROPFRAC function, 5-24
The PARTFRAC function, 5-25
The FCOEF function, 5-25
The FROOTS function, 5-26
Step-by-step operations with polynomial fractions, 5-26
The CONVERT menu and algebraic operations, 5-27
UNITS convert menu, 5-27
Page TOC-6
BASE convert menu, 5-28
TRIGONOMETRIC convert menu, 5-28
MATRICES convert menu, 5-28
REWRITE convert menu, 5-28
Chapter 6 - Solution to single equations
, 6-1
Symbolic solution of algebraic equations, 6-1
Function ISOL, 6-1
Function SOLVE, 6-2
Function SOLVEVX, 6-4
Function ZEROS, 6-4
Numerical solver menu, 6-5
Polynomial equations, 6-6
Financial calculations, 6-9
Solving equations with one unknown through NUM.SLV, 6-14
The SOLVE soft menu, 6-27
The ROOT sub-menu, 6-27
Function ROOT, 6-27
Variable EQ, 6-28
The SOLVR sub-menu, 6-28
The DIFFE sub-menu, 6-30
The POLY sub-menu, 6-30
The SYS sub-menu, 6-31
The TVM sub-menu, 6-31
Chapter 7 - Solving multiple equations, 7-1
Rational equation systems, 7-1
Example 1 - Projectile motion, 7-1
Example 2 - Stresses in a thick wall cylinder, 7-2
Example 3 – System of polynomial equations, 7-4
Solution to simultaneous equations with MSLV, 7-4
Example 1 - Example from the help facility, 7-5
Example 2 - Entrance from a lake into an open channel, 7-6
Using the Multiple Equation Solver (MES), 7-10
Application 1 - Solution of triangles, 7-10
Application 2 - Velocity and acceleration in polar coordinates, 7-18
Page TOC-7
Chapter 8 - Operations with Lists
, 8-1
Definitions, 8-1
Creating and storing lists, 8-1
Composing and decomposing lists, 8-2
Operations with lists of numbers, 8-3
Changing sign, 8-3
Addition, subtraction, multiplication, division, 8-3
Real number functions from the keyboard, 8-5
Real number functions from the MTH menu, 8-5
Examples of functions that use two arguments, 8-6
Lists of complex numbers, 8-7
Lists of algebraic objects, 8-8
The MTH/LIST menu, 8-8
Manipulating elements of a list, 8-10
List size, 8-10
Extracting and inserting elements, 8-10
Element position in the list, 8-11
HEAD and TAIL functions, 8-11
The SEQ function, 8-11
The MAP function, 8-12
Defining functions that use lists, 8-13
Applications of lists, 8-14
Harmonic mean of a list, 8-15
Geometric mean of a list, 8-16
Weighted average, 8-17
Statistics of grouped data, 8-18
Chapter 9 - Vectors, 9-1
Definitions, 9-1
Entering vectors, 9-2
Typing vectors in the stack, 9-2
Storing vectors into variables, 9-3
Using the Matrix Writer (MTWR) to enter vectors, 9-3
Page TOC-8
Building a vector with ARRY, 9-6
Identifying, extracting, and inserting vector elements, 9-7
Simple operations with vectors, 9-9
Changing sign, 9-9
Addition, subtraction, 9-9
Multiplication and division by a scalar, 9-10
Absolute value function, 9-10
The MTH/VECTOR menu, 9-10
Magnitude, 9-11
Dot product, 9-11
Cross product, 9-11
Decomposing a vector, 9-12
Building a two-dimensional vector, 9-12
Building a three-dimensional vector, 9-13
Changing coordinate system, 9-13
Application of vector operations, 9-16
Resultant of forces, 9-16
Angle between vectors, 9-16
Moment of a force, 9-17
Equation of a plane in space, 9-18
Row vectors, column vectors, and lists, 9-19
Function OBJ, 9-20
Function LIST, 9-20
Function DROP, 9-21
Transforming a row vector into a column vector, 9-21
Transforming a column vector into a row vector, 9-22
Transforming a list into a vector, 9-24
Transforming a vector (or matrix) into a list, 9-25
Chapter 10 - Creating and manipulating matrices, 10-1
Definitions, 10-1
Entering matrices in the stack, 10-2
Using the Matrix Writer, 10-2
Typing the matrix directly into the stack, 10-3
Creating matrices with calculator functions, 10-3
Functions GET and PUT, 10-6
Page TOC-9
Functions GETI and PUTI, 10-6
Function SIZE, 10-7
Function TRN, 10-8
Function CON, 10-8
Function IDN, 10-9
Function RDM, 10-10
Function RANM, 10-11
Function SUB, 10-11
Function REPL, 10-12
Function DIAG, 10-12
Function DIAG, 10-13
Function VANDERMONDE, 10-14
Function HILBERT, 10-14
A program to build a matrix out of a number of lists, 10-15
Lists represent columns of the matrix, 10-15
Lists represent rows of the matrix, 10-17
Manipulating matrices by columns, 10-18
Function COL, 10-18
Function COL, 10-19
Function COL+, 10-20
Function COL-, 10-20
Function CSWP, 10-21
Manipulating matrices by rows, 10-21
Function ROW, 10-22
Function ROW , 10-23
Function ROW+, 10-24
Function ROW -, 10-24
Function RSWP, 10-25
Function RCI, 10-25
Function RCIJ, 10-26
Chapter 11 - Matrix Operations and Linear Algebra
, 11-1
Operations with matrices, 11-1
Addition and subtraction, 11-2
Multiplication, 11-2
Characterizing a matrix (the matrix NORM menu), 11-6
Page TOC-10
Function ABS, 11-7
Function SNRM, 11-7
Functions RNRM and CNRM, 11-8
Function SRAD, 11-9
Function COND, 11-9
Function RANK, 11-10
Function DET, 11-11
Function TRACE, 11-13
Function TRAN, 11-14
Additional matrix operations (the matrix OPER menu), 11-14
Function AXL, 11-15
Function AXM, 11-15
Function LCXM, 11-15
Solution of linear systems, 11-16
Using the numerical solver for linear systems, 11-17
Least-square solution (function LSQ), 11-23
Solution with the inverse matrix, 11-26
Solution by “division” of matrices, 11-26
Solving multiple set of equations with the same coefficient
matrix, 11-27
Gaussian and Gauss-Jordan elimination, 11-28
Step-by-step calculator procedure for solving linear systems, 11-37
Solution to linear systems using calculator functions, 11-46
Residual errors in linear system solutions (function RSD) , 11-43
Eigenvalues and eigenvectors, 11-44
Function PCAR, 11-44
Function EGVL, 11-45
Function EGV, 11-46
Function JORDAN, 11-47
Function MAD, 11-47
Matrix factorization, 11-48
Function LU, 11-49
Orthogonal matrices and singular value decomposition, 11-49
Function SCHUR, 11-50
Function LQ, 11-51
Function QR, 11-51
Page TOC-11
Matrix Quadratic Forms, 11-51
The QUADF menu, 11-52
Linear Applications, 11-54
Function IMAGE, 11-54
Function ISOM, 11-54
Function KER, 11-55
Function MKISOM, 11-55
Chapter 12 - Graphics
, 12-1
Graphs options in the calculator, 12-1
Plotting an expression of the form y = f(x) , 12-2
Some useful PLOT operations for FUNCTION plots, 12-5
Saving a graph for future use, 12-8
Graphics of transcendental functions, 12-10
Graph of ln(X) , 12-8
Graph of the exponential function, 12-10
The PPAR variable, 12-11
Inverse functions and their graphs, 12-12
Summary of FUNCTION plot operation, 12-13
Plots of trigonometric and hyperbolic functions and their inverses, 12-16
Generating a table of values for a function, 12-17
The TPAR variable, 12-18
Plots in polar coordinates, 12-19
Plotting conic curves, 12-21
Parametric plots, 12-23
Generating a table of parametric equations, 12-26
Plotting the solution to simple differential equations, 12-26
Truth plots, 12-29
Plotting histograms, bar plots, and scatterplots, 12-30
Bar plots, 12-30
Scatter plots, 12-32
Slope fields, 12-34
Fast 3D plots, 12-35
Wireframe plots, 12-37
Ps-Contour plots, 12-39
Y-Slice plots, 12-41
Page TOC-12
Gridmap plots, 12-42
Pr-Surface plots, 12-43
The VPAR variable, 12-44
Interactive drawing, 12-44
DOT+ and DOT-, 12-45
MARK, 12-46
LINE, 12-46
TLINE, 12-46
BOX, 12-47
CIRCL, 12-47
LABEL, 12-47
DEL, 12-47
ERASE, 12-48
MENU, 12-48
SUB, 12-48
REPL, 12-48
PICT, 12-48
X,Y, 12-48
Zooming in and out in the graphics display, 12-49
ZFACT, ZIN, ZOUT, and ZLAST, 12-49
BOXZ, 12-50
ZDFLT, ZAUTO, 12-50
HZIN, HZOUT, VZIN, and VZOUT, 12-50
CNTR, 12-50
ZDECI, 12-50
ZINTG, 12-51
ZSQR, 12-51
ZTRIG, 12-51
The SYMBOLIC menu and graphs, 12-51
The SYMB/GRAPH menu, 12-52
Function DRAW3DMATRIX, 12-54
Chapter 13 - Calculus Applications, 13-1
The CALC (Calculus) menu, 13-1
Limits and derivatives, 13-1
Function lim, 13-2
Page TOC-13
Derivatives, 13-3
Function DERIV and DERVX,13-3
The DERIV&INTEG menu, 13-3
Calculating derivatives with ,13-4
The chain rule,13-6
Derivatives of equations,13-6
Implicit derivatives,13-7
Application of derivatives,13-7
Analyzing graphics of functions,13-7
Function DOMAIN, 13-9
Function TABVAL, 13-9
Function SIGNTAB, 13-10
Function TABVAR, 13-10
Using derivatives to calculate extreme points, 13-12
Higher-order derivatives, 13-13
Anti-derivatives and integrals, ,13-14
Functions INT, INTVX, RISCH, SIGMA, and SIGMAVX,13-14
Definite integrals,13-15
Step-by-step evaluation of derivatives and integrals,13-16
Integrating an equation, 13-18
Techniques of integration, 13-18
Substitution or change of variables, 13-18
Integration by parts and differentials,13-19
Integration by partial fractions,13-20
Improper integrals,13-21
Integration with units, 13-21
Infinite series,13-23
Taylor and Maclaurin’s series,13-23
Taylor polynomial and remainder,13-23
Functions TAYLR, TAYRL0, and SERIES,13-24
Chapter 14 - Multi-variate Calculus Applications, 14-1
Multi-variate functions, 14-1
Partial derivatives, 14-1
Higher-order derivatives, 14-3
The chain rule for partial derivatives, 14-4
Page TOC-14
Total differential of a function z = z(x,y) , 14-5
Determining extrema in functions of two variables, 14-5
Using function HESS to analyze extrema, 14-6
Multiple integrals, 14-8
Jacobian of coordinate transformation, 14-9
Double integral in polar coordinates, 14-9
Chapter 15 - Vector Analysis Applications, 15-1
Definitions, 15-1
Gradient and directional derivative, 15-1
A program to calculate the gradient, 15-2
Using function HESS to obtain the gradient, 15-2
Potential of a gradient, 15-3
Divergence, 15-4
Laplacian, 15-4
Curl, 15-5
Irrotational fields and potential function, 15-5
Vector potential, 15-6
Chapter 16 - Differential Equations
, 16-1
Basic operations with differential equations, 16-1
Entering differential equations, 16-1
Checking solutions in the calculator, 16-2
Slope field visualization of solutions, 16-3
The CALC/DIFF menu, 16-4
Solution to linear and non-linear equations, 16-4
Function LDEC, 16-5
Function DESOLVE, 16-7
The variable ODETYPE, 16-8
Laplace transforms, 16-10
Definitions, 16-10
Laplace transform and inverses in the calculator, 16-11
Laplace transform theorems, 16-12
Dirac’s delta function and Heaviside’s step function, 16-15
Applications of Laplace transform in the solution of ODEs, 16-17
Fourier series, 16-27
Page TOC-15
Function FOURIER, 16-28
Fourier series for a quadratic function, 16-29
Fourier series for a triangular wave, 16-35
Fourier series for a square wave, 16-39
Fourier series applications in differential equations, 16-42
Fourier Transforms, 16-43
Definition of Fourier transforms, 16-46
Properties of the Fourier transform, 16-48
Fast Fourier Transform (FFT) , 16-49
Examples of FFT applications, 16-50
Solution to specific second-order differential equations, 16-53
The Cauchy or Euler equation , 16-53
Legendre’s equation, 16-54
Bessel’s equation, 16-55
Chebyshev or Tchebycheff polynomials, 16-57
Laguerre’s equation, 16-58
Weber’s equation and Hermite polynomials, 16-59
Numerical and graphical solutions to ODEs, 16-60
Numerical solution of first-order ODE, 16-60
Graphical solution of first-order ODE, 16-62
Numerical solution of second-order ODE, 16-64
Graphical solution for a second-order ODE, 16-66
Numerical solution for stiff first-order ODE, 16-68
Numerical solution to ODEs with the SOLVE/DIFF menu, 16-69
Function RKF, 16-70
Function RRK, 16-71
Function RKFSTEP, 16-72
Function RRKSTEP, 16-73
Function RKFST, 16-72
Function RKFERR, 16-72
Function RSBERR, 16-73
Chapter 17 - Probability Applications, 17-1
The MTH/PROBABILITY.. sub-menu - part 1, 17-1
Factorials, combinations, and permutations, 17-1
Random numbers, 17-2
Page TOC-16
Discrete probability distributions, 17-4
Binomial distribution, 17-4
Poisson distribution, 17-5
Continuous probability distributions, 17-6
The gamma distribution, 17-6
The exponential distribution, 17-7
The beta distribution, 17-7
The Weibull distribution, 17-7
Functions for continuous distributions, 17-7
Continuous distributions for statistical inference, 17-9
Normal distribution pdf, 17-9
Normal distribution cdf, 17-10
The Student-t distribution, 17-10
The Chi-square distribution, 17-11
The F distribution, 17-12
Inverse cumulative distribution functions, 17-13
Chapter 18 - Statistical Applications, 18-1
Pre-programmed statistical features, 18-1
Entering data, 18-1
Calculating single-variable statistics, 18-2
Obtaining frequency distributions, 18-5
Fitting data to a function y = f(x) , 18-10
Obtaining additional summary statistics, 18-13
Calculation of percentiles, 18-14
The STAT soft menu, 18-15
The DATA sub-menu, 18-15
The ΣPAR sub-menu, 18-16
The 1VAR sub-menu, 18-16
The PLOT sub-menu, 18-17
The FIT sub-menu, 18-18
Example of STAT menu operations, 18-18
Confidence intervals, 18-22
Estimation of Confidence Intervals, 18-23
Definitions, 18-23
Confidence intervals for the population mean when the
  • Page 1 1
  • Page 2 2
  • Page 3 3
  • Page 4 4
  • Page 5 5
  • Page 6 6
  • Page 7 7
  • Page 8 8
  • Page 9 9
  • Page 10 10
  • Page 11 11
  • Page 12 12
  • Page 13 13
  • Page 14 14
  • Page 15 15
  • Page 16 16
  • Page 17 17
  • Page 18 18
  • Page 19 19
  • Page 20 20
  • Page 21 21
  • Page 22 22
  • Page 23 23
  • Page 24 24
  • Page 25 25
  • Page 26 26
  • Page 27 27
  • Page 28 28
  • Page 29 29
  • Page 30 30
  • Page 31 31
  • Page 32 32
  • Page 33 33
  • Page 34 34
  • Page 35 35
  • Page 36 36
  • Page 37 37
  • Page 38 38
  • Page 39 39
  • Page 40 40
  • Page 41 41
  • Page 42 42
  • Page 43 43
  • Page 44 44
  • Page 45 45
  • Page 46 46
  • Page 47 47
  • Page 48 48
  • Page 49 49
  • Page 50 50
  • Page 51 51
  • Page 52 52
  • Page 53 53
  • Page 54 54
  • Page 55 55
  • Page 56 56
  • Page 57 57
  • Page 58 58
  • Page 59 59
  • Page 60 60
  • Page 61 61
  • Page 62 62
  • Page 63 63
  • Page 64 64
  • Page 65 65
  • Page 66 66
  • Page 67 67
  • Page 68 68
  • Page 69 69
  • Page 70 70
  • Page 71 71
  • Page 72 72
  • Page 73 73
  • Page 74 74
  • Page 75 75
  • Page 76 76
  • Page 77 77
  • Page 78 78
  • Page 79 79
  • Page 80 80
  • Page 81 81
  • Page 82 82
  • Page 83 83
  • Page 84 84
  • Page 85 85
  • Page 86 86
  • Page 87 87
  • Page 88 88
  • Page 89 89
  • Page 90 90
  • Page 91 91
  • Page 92 92
  • Page 93 93
  • Page 94 94
  • Page 95 95
  • Page 96 96
  • Page 97 97
  • Page 98 98
  • Page 99 99
  • Page 100 100
  • Page 101 101
  • Page 102 102
  • Page 103 103
  • Page 104 104
  • Page 105 105
  • Page 106 106
  • Page 107 107
  • Page 108 108
  • Page 109 109
  • Page 110 110
  • Page 111 111
  • Page 112 112
  • Page 113 113
  • Page 114 114
  • Page 115 115
  • Page 116 116
  • Page 117 117
  • Page 118 118
  • Page 119 119
  • Page 120 120
  • Page 121 121
  • Page 122 122
  • Page 123 123
  • Page 124 124
  • Page 125 125
  • Page 126 126
  • Page 127 127
  • Page 128 128
  • Page 129 129
  • Page 130 130
  • Page 131 131
  • Page 132 132
  • Page 133 133
  • Page 134 134
  • Page 135 135
  • Page 136 136
  • Page 137 137
  • Page 138 138
  • Page 139 139
  • Page 140 140
  • Page 141 141
  • Page 142 142
  • Page 143 143
  • Page 144 144
  • Page 145 145
  • Page 146 146
  • Page 147 147
  • Page 148 148
  • Page 149 149
  • Page 150 150
  • Page 151 151
  • Page 152 152
  • Page 153 153
  • Page 154 154
  • Page 155 155
  • Page 156 156
  • Page 157 157
  • Page 158 158
  • Page 159 159
  • Page 160 160
  • Page 161 161
  • Page 162 162
  • Page 163 163
  • Page 164 164
  • Page 165 165
  • Page 166 166
  • Page 167 167
  • Page 168 168
  • Page 169 169
  • Page 170 170
  • Page 171 171
  • Page 172 172
  • Page 173 173
  • Page 174 174
  • Page 175 175
  • Page 176 176
  • Page 177 177
  • Page 178 178
  • Page 179 179
  • Page 180 180
  • Page 181 181
  • Page 182 182
  • Page 183 183
  • Page 184 184
  • Page 185 185
  • Page 186 186
  • Page 187 187
  • Page 188 188
  • Page 189 189
  • Page 190 190
  • Page 191 191
  • Page 192 192
  • Page 193 193
  • Page 194 194
  • Page 195 195
  • Page 196 196
  • Page 197 197
  • Page 198 198
  • Page 199 199
  • Page 200 200
  • Page 201 201
  • Page 202 202
  • Page 203 203
  • Page 204 204
  • Page 205 205
  • Page 206 206
  • Page 207 207
  • Page 208 208
  • Page 209 209
  • Page 210 210
  • Page 211 211
  • Page 212 212
  • Page 213 213
  • Page 214 214
  • Page 215 215
  • Page 216 216
  • Page 217 217
  • Page 218 218
  • Page 219 219
  • Page 220 220
  • Page 221 221
  • Page 222 222
  • Page 223 223
  • Page 224 224
  • Page 225 225
  • Page 226 226
  • Page 227 227
  • Page 228 228
  • Page 229 229
  • Page 230 230
  • Page 231 231
  • Page 232 232
  • Page 233 233
  • Page 234 234
  • Page 235 235
  • Page 236 236
  • Page 237 237
  • Page 238 238
  • Page 239 239
  • Page 240 240
  • Page 241 241
  • Page 242 242
  • Page 243 243
  • Page 244 244
  • Page 245 245
  • Page 246 246
  • Page 247 247
  • Page 248 248
  • Page 249 249
  • Page 250 250
  • Page 251 251
  • Page 252 252
  • Page 253 253
  • Page 254 254
  • Page 255 255
  • Page 256 256
  • Page 257 257
  • Page 258 258
  • Page 259 259
  • Page 260 260
  • Page 261 261
  • Page 262 262
  • Page 263 263
  • Page 264 264
  • Page 265 265
  • Page 266 266
  • Page 267 267
  • Page 268 268
  • Page 269 269
  • Page 270 270
  • Page 271 271
  • Page 272 272
  • Page 273 273
  • Page 274 274
  • Page 275 275
  • Page 276 276
  • Page 277 277
  • Page 278 278
  • Page 279 279
  • Page 280 280
  • Page 281 281
  • Page 282 282
  • Page 283 283
  • Page 284 284
  • Page 285 285
  • Page 286 286
  • Page 287 287
  • Page 288 288
  • Page 289 289
  • Page 290 290
  • Page 291 291
  • Page 292 292
  • Page 293 293
  • Page 294 294
  • Page 295 295
  • Page 296 296
  • Page 297 297
  • Page 298 298
  • Page 299 299
  • Page 300 300
  • Page 301 301
  • Page 302 302
  • Page 303 303
  • Page 304 304
  • Page 305 305
  • Page 306 306
  • Page 307 307
  • Page 308 308
  • Page 309 309
  • Page 310 310
  • Page 311 311
  • Page 312 312
  • Page 313 313
  • Page 314 314
  • Page 315 315
  • Page 316 316
  • Page 317 317
  • Page 318 318
  • Page 319 319
  • Page 320 320
  • Page 321 321
  • Page 322 322
  • Page 323 323
  • Page 324 324
  • Page 325 325
  • Page 326 326
  • Page 327 327
  • Page 328 328
  • Page 329 329
  • Page 330 330
  • Page 331 331
  • Page 332 332
  • Page 333 333
  • Page 334 334
  • Page 335 335
  • Page 336 336
  • Page 337 337
  • Page 338 338
  • Page 339 339
  • Page 340 340
  • Page 341 341
  • Page 342 342
  • Page 343 343
  • Page 344 344
  • Page 345 345
  • Page 346 346
  • Page 347 347
  • Page 348 348
  • Page 349 349
  • Page 350 350
  • Page 351 351
  • Page 352 352
  • Page 353 353
  • Page 354 354
  • Page 355 355
  • Page 356 356
  • Page 357 357
  • Page 358 358
  • Page 359 359
  • Page 360 360
  • Page 361 361
  • Page 362 362
  • Page 363 363
  • Page 364 364
  • Page 365 365
  • Page 366 366
  • Page 367 367
  • Page 368 368
  • Page 369 369
  • Page 370 370
  • Page 371 371
  • Page 372 372
  • Page 373 373
  • Page 374 374
  • Page 375 375
  • Page 376 376
  • Page 377 377
  • Page 378 378
  • Page 379 379
  • Page 380 380
  • Page 381 381
  • Page 382 382
  • Page 383 383
  • Page 384 384
  • Page 385 385
  • Page 386 386
  • Page 387 387
  • Page 388 388
  • Page 389 389
  • Page 390 390
  • Page 391 391
  • Page 392 392
  • Page 393 393
  • Page 394 394
  • Page 395 395
  • Page 396 396
  • Page 397 397
  • Page 398 398
  • Page 399 399
  • Page 400 400
  • Page 401 401
  • Page 402 402
  • Page 403 403
  • Page 404 404
  • Page 405 405
  • Page 406 406
  • Page 407 407
  • Page 408 408
  • Page 409 409
  • Page 410 410
  • Page 411 411
  • Page 412 412
  • Page 413 413
  • Page 414 414
  • Page 415 415
  • Page 416 416
  • Page 417 417
  • Page 418 418
  • Page 419 419
  • Page 420 420
  • Page 421 421
  • Page 422 422
  • Page 423 423
  • Page 424 424
  • Page 425 425
  • Page 426 426
  • Page 427 427
  • Page 428 428
  • Page 429 429
  • Page 430 430
  • Page 431 431
  • Page 432 432
  • Page 433 433
  • Page 434 434
  • Page 435 435
  • Page 436 436
  • Page 437 437
  • Page 438 438
  • Page 439 439
  • Page 440 440
  • Page 441 441
  • Page 442 442
  • Page 443 443
  • Page 444 444
  • Page 445 445
  • Page 446 446
  • Page 447 447
  • Page 448 448
  • Page 449 449
  • Page 450 450
  • Page 451 451
  • Page 452 452
  • Page 453 453
  • Page 454 454
  • Page 455 455
  • Page 456 456
  • Page 457 457
  • Page 458 458
  • Page 459 459
  • Page 460 460
  • Page 461 461
  • Page 462 462
  • Page 463 463
  • Page 464 464
  • Page 465 465
  • Page 466 466
  • Page 467 467
  • Page 468 468
  • Page 469 469
  • Page 470 470
  • Page 471 471
  • Page 472 472
  • Page 473 473
  • Page 474 474
  • Page 475 475
  • Page 476 476
  • Page 477 477
  • Page 478 478
  • Page 479 479
  • Page 480 480
  • Page 481 481
  • Page 482 482
  • Page 483 483
  • Page 484 484
  • Page 485 485
  • Page 486 486
  • Page 487 487
  • Page 488 488
  • Page 489 489
  • Page 490 490
  • Page 491 491
  • Page 492 492
  • Page 493 493
  • Page 494 494
  • Page 495 495
  • Page 496 496
  • Page 497 497
  • Page 498 498
  • Page 499 499
  • Page 500 500
  • Page 501 501
  • Page 502 502
  • Page 503 503
  • Page 504 504
  • Page 505 505
  • Page 506 506
  • Page 507 507
  • Page 508 508
  • Page 509 509
  • Page 510 510
  • Page 511 511
  • Page 512 512
  • Page 513 513
  • Page 514 514
  • Page 515 515
  • Page 516 516
  • Page 517 517
  • Page 518 518
  • Page 519 519
  • Page 520 520
  • Page 521 521
  • Page 522 522
  • Page 523 523
  • Page 524 524
  • Page 525 525
  • Page 526 526
  • Page 527 527
  • Page 528 528
  • Page 529 529
  • Page 530 530
  • Page 531 531
  • Page 532 532
  • Page 533 533
  • Page 534 534
  • Page 535 535
  • Page 536 536
  • Page 537 537
  • Page 538 538
  • Page 539 539
  • Page 540 540
  • Page 541 541
  • Page 542 542
  • Page 543 543
  • Page 544 544
  • Page 545 545
  • Page 546 546
  • Page 547 547
  • Page 548 548
  • Page 549 549
  • Page 550 550
  • Page 551 551
  • Page 552 552
  • Page 553 553
  • Page 554 554
  • Page 555 555
  • Page 556 556
  • Page 557 557
  • Page 558 558
  • Page 559 559
  • Page 560 560
  • Page 561 561
  • Page 562 562
  • Page 563 563
  • Page 564 564
  • Page 565 565
  • Page 566 566
  • Page 567 567
  • Page 568 568
  • Page 569 569
  • Page 570 570
  • Page 571 571
  • Page 572 572
  • Page 573 573
  • Page 574 574
  • Page 575 575
  • Page 576 576
  • Page 577 577
  • Page 578 578
  • Page 579 579
  • Page 580 580
  • Page 581 581
  • Page 582 582
  • Page 583 583
  • Page 584 584
  • Page 585 585
  • Page 586 586
  • Page 587 587
  • Page 588 588
  • Page 589 589
  • Page 590 590
  • Page 591 591
  • Page 592 592
  • Page 593 593
  • Page 594 594
  • Page 595 595
  • Page 596 596
  • Page 597 597
  • Page 598 598
  • Page 599 599
  • Page 600 600
  • Page 601 601
  • Page 602 602
  • Page 603 603
  • Page 604 604
  • Page 605 605
  • Page 606 606
  • Page 607 607
  • Page 608 608
  • Page 609 609
  • Page 610 610
  • Page 611 611
  • Page 612 612
  • Page 613 613
  • Page 614 614
  • Page 615 615
  • Page 616 616
  • Page 617 617
  • Page 618 618
  • Page 619 619
  • Page 620 620
  • Page 621 621
  • Page 622 622
  • Page 623 623
  • Page 624 624
  • Page 625 625
  • Page 626 626
  • Page 627 627
  • Page 628 628
  • Page 629 629
  • Page 630 630
  • Page 631 631
  • Page 632 632
  • Page 633 633
  • Page 634 634
  • Page 635 635
  • Page 636 636
  • Page 637 637
  • Page 638 638
  • Page 639 639
  • Page 640 640
  • Page 641 641
  • Page 642 642
  • Page 643 643
  • Page 644 644
  • Page 645 645
  • Page 646 646
  • Page 647 647
  • Page 648 648
  • Page 649 649
  • Page 650 650
  • Page 651 651
  • Page 652 652
  • Page 653 653
  • Page 654 654
  • Page 655 655
  • Page 656 656
  • Page 657 657
  • Page 658 658
  • Page 659 659
  • Page 660 660
  • Page 661 661
  • Page 662 662
  • Page 663 663
  • Page 664 664
  • Page 665 665
  • Page 666 666
  • Page 667 667
  • Page 668 668
  • Page 669 669
  • Page 670 670
  • Page 671 671
  • Page 672 672
  • Page 673 673
  • Page 674 674
  • Page 675 675
  • Page 676 676
  • Page 677 677
  • Page 678 678
  • Page 679 679
  • Page 680 680
  • Page 681 681
  • Page 682 682
  • Page 683 683
  • Page 684 684
  • Page 685 685
  • Page 686 686
  • Page 687 687
  • Page 688 688
  • Page 689 689
  • Page 690 690
  • Page 691 691
  • Page 692 692
  • Page 693 693
  • Page 694 694
  • Page 695 695
  • Page 696 696
  • Page 697 697
  • Page 698 698
  • Page 699 699
  • Page 700 700
  • Page 701 701
  • Page 702 702
  • Page 703 703
  • Page 704 704
  • Page 705 705
  • Page 706 706
  • Page 707 707
  • Page 708 708
  • Page 709 709
  • Page 710 710
  • Page 711 711
  • Page 712 712
  • Page 713 713
  • Page 714 714
  • Page 715 715
  • Page 716 716
  • Page 717 717
  • Page 718 718
  • Page 719 719
  • Page 720 720
  • Page 721 721
  • Page 722 722
  • Page 723 723
  • Page 724 724
  • Page 725 725
  • Page 726 726
  • Page 727 727
  • Page 728 728
  • Page 729 729
  • Page 730 730
  • Page 731 731
  • Page 732 732
  • Page 733 733
  • Page 734 734
  • Page 735 735
  • Page 736 736
  • Page 737 737
  • Page 738 738
  • Page 739 739
  • Page 740 740
  • Page 741 741
  • Page 742 742
  • Page 743 743
  • Page 744 744
  • Page 745 745
  • Page 746 746
  • Page 747 747
  • Page 748 748
  • Page 749 749
  • Page 750 750
  • Page 751 751
  • Page 752 752
  • Page 753 753
  • Page 754 754
  • Page 755 755
  • Page 756 756
  • Page 757 757
  • Page 758 758
  • Page 759 759
  • Page 760 760
  • Page 761 761
  • Page 762 762
  • Page 763 763
  • Page 764 764
  • Page 765 765
  • Page 766 766
  • Page 767 767
  • Page 768 768
  • Page 769 769
  • Page 770 770
  • Page 771 771
  • Page 772 772
  • Page 773 773
  • Page 774 774
  • Page 775 775
  • Page 776 776
  • Page 777 777
  • Page 778 778
  • Page 779 779
  • Page 780 780
  • Page 781 781
  • Page 782 782
  • Page 783 783
  • Page 784 784
  • Page 785 785
  • Page 786 786
  • Page 787 787
  • Page 788 788
  • Page 789 789
  • Page 790 790
  • Page 791 791
  • Page 792 792
  • Page 793 793
  • Page 794 794
  • Page 795 795
  • Page 796 796
  • Page 797 797
  • Page 798 798
  • Page 799 799
  • Page 800 800
  • Page 801 801
  • Page 802 802
  • Page 803 803
  • Page 804 804
  • Page 805 805
  • Page 806 806
  • Page 807 807
  • Page 808 808
  • Page 809 809
  • Page 810 810
  • Page 811 811
  • Page 812 812
  • Page 813 813
  • Page 814 814
  • Page 815 815
  • Page 816 816
  • Page 817 817
  • Page 818 818
  • Page 819 819
  • Page 820 820
  • Page 821 821
  • Page 822 822
  • Page 823 823
  • Page 824 824
  • Page 825 825
  • Page 826 826
  • Page 827 827
  • Page 828 828
  • Page 829 829
  • Page 830 830
  • Page 831 831
  • Page 832 832
  • Page 833 833
  • Page 834 834
  • Page 835 835
  • Page 836 836
  • Page 837 837
  • Page 838 838
  • Page 839 839
  • Page 840 840
  • Page 841 841
  • Page 842 842
  • Page 843 843
  • Page 844 844
  • Page 845 845
  • Page 846 846
  • Page 847 847
  • Page 848 848
  • Page 849 849
  • Page 850 850
  • Page 851 851
  • Page 852 852
  • Page 853 853
  • Page 854 854
  • Page 855 855
  • Page 856 856
  • Page 857 857
  • Page 858 858
  • Page 859 859
  • Page 860 860
  • Page 861 861
  • Page 862 862

HP 49g+ Graphing Calculator User guide

Type
User guide

Ask a question and I''ll find the answer in the document

Finding information in a document is now easier with AI