Victron energy miniBMS Owner's manual

  • Hello! I am an AI chatbot trained to assist you with the Victron energy miniBMS Owner's manual. I’ve already reviewed the document and can help you find the information you need or explain it in simple terms. Just ask your questions, and providing more details will help me assist you more effectively!
Manual
EN
Handleiding
NL
Manuel
FR
Handbuch
DE
Manual
ES
Användarhandbok
SE
miniBMS with pre-alarm
1
EN NL FR DE ES SE
1. General Description
A simple and low cost alternative to the VE.Bus BMS
The miniBMS can replace the VE.Bus BMS in several applications. It is however not suitable for use with VE.Bus MultiPlus and
Quattro inverter/chargers: it has no VE.Bus interface.
The miniBMS is intended for use with Victron Smart LiFePo4 batteries with M8 circular connectors.
The miniBMS has two outputs, similar to the VE.Bus.BMS.
Load Disconnect output
The Load output is normally high and becomes free floating in case of imminent cell under voltage voltage (default 2,8V/cell,
adjustable on the battery between 2,6V and 2,8V per cell). Maximum current: 1A. The Load output is not short-circuit protected.
The Load output can be used to control:
A high current relay or contactor.
The remote on/off input of a BatteryProtect, inverter or DC-DC converter or other loads.
(a non inverting or inverting on/off cable may be required, please consult the manual)
Pre-alarm output
The pre-alarm output is normally free floating and becomes high in case of imminent cell under voltage (default 3,1V/cell,
adjustable on the battery between 2,85V and 3,15V per cell). Maximum current: 1A (not short circuit protected).
The minimum delay between pre-alarm and load disconnect is 30 seconds.
Charge disconnect output
The Charger output is normally high and becomes free floating in case of imminent cell over voltage or over temperature.
Maximum current: 10mA.
The Charger output is not suitable to power an inductive load such as a relay coil.
The Charger output can be used to control:
The remote on/off of a charger.
A Cyrix-Li-Charge relay.
A Cyrix-Li-ct Battery Combiner.
System on/off input
The system on/off input controls both outputs. When off, both outputs will be free floating so that loads and chargers are turned
off.
The System on/off consists of two terminals: Remote L and Remote H.
A remote on/off switch or relay contact can be connected between L and H.
Alternatively, terminal H can be switched to battery plus, or terminal L can be switched to battery minus.
Protects 12V, 24V and 48V systems
Operating voltage range: 8 to 70V DC.
LED indicators
Load ON (blue): Load output high (cell voltage >2.8V, adjustable on the battery).
Temp or OVP (red): Charger output free floating (due to cell over temperature (>50°C), cell under temperature (<5 °C)
or cell over voltage).
2. Safety instructions
Installation must strictly follow the national safety regulations in compliance with the enclosure, installation, creepage, clearance,
casualty, markings and segregation requirements of the end-use application. Installation must be performed by qualified and
trained installers only. Switch off the system and check for hazardous voltages before altering any connection.
1. Do not open the Lithium Ion Battery.
2. Do not discharge a new Lithium Ion Battery before it has been fully charged first.
3. Charge only within the specified limits.
4. Do not mount the Lithium Ion Battery upside down.
5. Check if the Li-Ion battery has been damaged during transport.
6.
3. Things to consider
3.1 Important warning
Li-ion batteries are expensive and can be damaged due to over discharge or over charge.
Damage due to over discharge can occur if small loads (such as: alarm systems, relays, standby current of certain loads, back
current drain of battery chargers or charge regulators) slowly discharge the battery when the system is not in use.
In case of any doubt about possible residual current draw, isolate the battery by opening the battery switch, pulling the battery
fuse(s) or disconnecting the battery plus when the system is not in use.
A residual discharge current is especially dangerous if the system has been discharged completely and a low cell
voltage shutdown has occurred. After shutdown due to low cell voltage, a capacity reserve of approximately 1Ah per
100Ah battery capacity is left in the battery. The battery will be damaged if the remaining capacity reserve is drawn
from the battery. A residual current of 10mA for example may damage a 200Ah battery if the system is left in
discharged state during more than 8 days.
2
3.3 DC loads with remote on/off terminals
DC loads must be switched off or disconnected in case of imminent cell under voltage.
The Load Disconnect output of the VE.Bus BMS can be used for this purpose.
The Load Disconnect is normally high (equal to battery voltage) and becomes free floating (= open circuit) in case of imminent
cell under voltage (no internal pull down in order to limit residual current consumption in case of low cell voltage).
DC loads with a remote on-off terminal that switches the load on when the terminal is pulled high (to battery plus) and switches it
off when the terminal is left free floating can be controlled directly with the Load Disconnect output.
See appendix for a list of Victron products with this behavior.
For DC loads with a remote on/off terminal that switches the load on when the terminal is pulled low (to battery minus) and
switches it off when the terminal is left free floating, the Inverting remote on-off cable can be used. See appendix.
Note: please check the residual current of the load when in off state. After low cell voltage shutdown a capacity reserve of
approximately 1Ah per 100Ah battery capacity is left in the battery. A residual current of 10mA for example may damage a 200Ah battery
if the system is left in discharged state during more than 8 days.
3.4 DC load: disconnecting the load with a BatteryProtect
A BatteryProtect will disconnect the load when:
input voltage (= battery voltage) has decreased below a preset value, or when
the remote on/off terminal is pulled low. The miniBMS can be used to control the remote on/off terminal
Contrary to a Cyrix or contactor, a BatteryProtect can start a load with a large input capacitor such as an inverter or a DC-DC
converter.
3.5 Charging the LiFePO battery with a battery charger
Battery charging must be reduced or stopped in case of imminent cell over voltage or over temperature.
The Charge Disconnect output of the VE.Bus BMS can be used for this purpose.
The Charge Disconnect is normally high (equal to battery voltage) and switches to open circuit state in case of imminent cell
over voltage.
Battery chargers with a remote on-off terminal that activates the charger when the terminal is pulled high (to battery plus) and
deactivates when the terminal is left free floating can be controlled directly with the Charge Disconnect output.
See appendix for a list of Victron products with this behavior.
Battery chargers with a remote terminal that activates the charger when the terminal is pulled low (to battery minus) and
deactivates when the terminal is left free floating, the Inverting remote on-off cable can be used. See appendix.
Alternatively, a Cyrix-Li-Charge can be used:
The Cyrix-Li-Charge is a unidirectional combiner that inserts in between a battery charger and the LiFePO battery. It will
engage only when charge voltage from a battery charger is present on its charge-side terminal. A control terminal connects to
the Charge Disconnect of the BMS.
3.6 Charging the LiFePO battery with an alternator
See figure 6.
The Cyrix-Li-ct is recommended for this application.
The microprocessor controlled Cyrix-Li-ct includes a timer and voltage trend detection. This will prevent frequent switching due
to a system voltage drop when connecting to a discharged battery.
3.7 Battery
In case of several batteries in parallel and or series configuration, the two M8 circular connector cord sets of each battery should
be connected in series (daisy chained).
Connect the two remaining cords to the BMS.
4. System examples
Figure 1: Application example for a DC off-grid system, with on/off switch between L and battery negative
3
EN NL FR DE ES SE
Figure 2: Application example for a vehicle or boat, with on/off switch between L and battery negative
Figure 3: Application example for a vehicle or boat, with on/off switch between H and L
4
Figure 4: Solar application with two MPPT 150/85 CAN-bus
The MPPT 150/85 CAN-bus has a remote on-off port which can be be controlled directly by the VE.Bus BMS
5. Specifications
miniBMS
Normal operating Input voltage range (Vbat) 8 70V DC
Current draw, normal operation 2.2 mA (excluding Load output and Charger output current)
Current draw, low cell voltage 1,2 mA
Current draw, remote off 1,2 mA
Load output
Normally high (Vbat 0.1V)
Source current limit: 1A (not short circuit protected)
Sink current: 0A (output free floating)
Charger output
Normally high (Vbat o.6V)
Source current limit: 10mA (short circuit protected)
Sink current: 0A (output free floating)
Pre-alarm
Normally free floating
In case of alarm: output voltage Vbat -0.1V
Maximum output current: 1A (not short circuit protected)
System on/off:
Remote L and Remote H
Use modes of the system on-off:
a. ON when the L and H terminal are interconnected (switch or relay contact)
b. ON when the L terminal is pulled to battery minus (V< 3.5V)
c. ON when the H terminal is high (2.9V < VH < Vbat)
d. OFF in all other conditions
GENERAL
Operating temperature -20 to +50°C 0 - 120°F
Humidity Max. 95% (non-condensing)
Protection grade IP20
ENCLOSURE
Material and colour ABS, matt black
Weight 0.1kg
Dimensions (h x w x d) 106 x 42 x 23mm
STANDARDS
Emission
Immunity
EN 60950
EN 61000-6-3, EN 55014-1
EN 61000-6-2, EN 61000-6-1, EN 55014-2
Regulation UN/ECE-R10 Rev.4
5
EN NL FR DE ES SE
EN
Appendix:
1. Loads which can be controlled directly by the Load Disconnect output of the BMS
Inverters:
All Phoenix inverters VE.Direct
Connect to the left hand terminal of the 2 pole connector
Phoenix 12/800; 24/800; 48/800
Phoenix 12/1200; 24/1200; 48/1200
Connect to the right hand terminal of the 2 pole connector
DC-DC converters:
All Tr type DC-DC converters with remote on/off connector,
and Orion 12/24-20; 24/12-25; 24/12-40; 24/12-70
Connect to terminal H of the 2 pole connector
BatteryProtect and Smart BatteryProtect
Connect to the right hand terminal respectively to terminal H
of the 2 pole connector
Cyrix -Li-Load
Connect to the control input
2. Loads for which an inverting remote on-off cable is needed (article number ASS030550100)
Phoenix 12/180; 24/180; 12/.250; 24/350
All Phoenix VE.Bus inverters rated at 3kVA and more (see fig 4)
3. Solar charge controllers which can be controlled directly by the Charge Disconnect output
BlueSolar MPPT 150/70 and 150/80 CAN-bus
Connect to the left hand terminal of the 2 pole connector (B+)
SmartSolar MPPT 150/45 and higher, Smart Solar MPPT 250/60 and higher
Connect to the right hand terminal (marked + or H) of the 2 pole connector
4. Solar charge controllers for which a VE.Direct non inverting remote on-off cable is needed
(article number ASS030550310)
All BlueSolar models, except the two CAN-bus models BlueSolar MPPT 150/70 and 150/80 CAN-bus
SmartSolar MPPT up to 150/35
5. Battery Chargers
For Skylla TG battery chargers a
Non inverting remote on-off cable is needed
(article number ASS030550200)
For Skylla-i battery chargers a
Skylla-i remote on-off cable is needed
(article number ASS030550400)
Other battery chargers:
Use a Cyrix-Li-Charge
1
EN NL FR DE ES SE
1. Algemene beschrijving
Een eenvoudig en goedkoop alternatief voor de VE.Bus BMS
De miniBMS kan de VE.Bus BMS in verschillende toepassingen vervangen. Het is echter niet geschikt voor gebruik met de VE.Bus
MultiPlus en Quattro-omvormers/acculaders: het heeft geen VE.Bus-interface.
De miniBMS is bedoeld voor gebruik met Victron Smart LiFePo4-accu's met ronde M8-contacten.
De miniBMS heeft twee uitgangen, vergelijkbaar met de VE.Bus.BMS.
Lastontkoppelingsuitgang
De lastuitgang is normaal gesproken hoog en wordt potentiaalvrij in het geval van mogelijke onderspanning van de cel (standaard 2,8
V/cel, aanpasbaar op de accu tussen de 2,6 V en 2,8 V per cel). Maximale stroom: 1 A. De lastuitgang is niet beveiligd tegen kortsluiting.
De lastuitgang kan worden gebruikt om de volgende aspecten te bedienen:
Een hoogstroomrelais of beveiliging.
De externe aan/uit-ingang van een accubeveiliging, omvormer of DC-DC-omvormer of andere lasten.
(mogelijk is een niet-omvormende of omvormende aan/uit-kabel nodig, raadpleeg de handleiding)
Vooralarmuitgang
De vooralarmuitgang is normaal gesproken potentiaalvrij en wordt hoog in het geval van mogelijke onderspanning van de cel (standaard
3,1 V/cel, instelbaar op de accu tussen 2,85 V en 3,15 V per cel). Maximale stroom: 1 A (niet beveiligd tegen kortsluiting)
De minimale vertraging tussen het vooralarm en de lastontkoppeling is 30 seconden.
Laadontkoppelingsuitgang
De laaduitgang is normaal gesproken hoog en wordt potentiaalvrij in het geval van mogelijke overbelasting van de cel of bij een te hoge
temperatuur. Maximale stroom: 10 mA.
De laaduitgang is niet geschikt om een inductieve last te voeden, zoals een relaisspoel.
De laaduitgang kan worden gebruikt voor het bedienen van:
De externe aan/uit van een acculader.
Een Cyrix-Li-Charge-relais.
Een Cyrix-Li-ct accucombinatie.
Systeem aan/uit-ingang
De aan/uit-ingang van het systeem regelt beide uitgangen. Wanneer beide uitgangen zijn uitgeschakeld zijn beide potentiaalvrij zodat
lasten en acculaders uitgeschakeld worden.
De aan/uit van het systeem bestaat uit twee aansluitklemmen: De externe L-klem en de externe H-klem.
Een externe aan-/uitschakelaar of relaiscontact kan worden aangesloten tussen de L- en H-klemmen.
Als alternatief, kan de H-klem worden geschakeld naar accuplus of kan L-klem worden omgeschakeld naar de accumin.
Beschermt 12 V-, 24 V- en 48 V-systemen
Bedrijfsspanningsbereik: 8 tot 70 V DC.
LED-indicatoren
Last AAN (blauw): Lastvermogen hoog (celspanning > 2,8 V, aanpasbaar per accu).
Temp of OVP (rood): Laaduitgang potentiaalvrij (door cel-over-temperatuur (>50 °C), cel onder temperatuur (<5 °C) of cel-
overspanning).
2. Veiligheidsinstructies
De installatie moet strikt voldoen aan de nationale veiligheidsvoorschriften in overeenstemming met de vereisten voor behuizing, systeem,
kruipwegen, slagwijdten, verlies, markeringen en segregatie voor de eindgebruiker. De installatie dient uitsluitend door gekwalificeerde en
opgeleide installateurs te worden uitgevoerd. Schakel het systeem uit en controleer op gevaarlijke spanningen vóórdat u een aansluiting
wijzigt.
7. Open de lithium-ion-accu niet.
8. Ontlaad de nieuwe lithium-ion-accu niet vóór deze volledig is opgeladen.
9. Alleen binnen de opgegeven limieten opladen.
10. Monteer de lithium-ion-accu niet ondersteboven.
11. Controleer of de Li-ion-accu tijdens het transport is beschadigd.
12.
3. Houd rekening met de volgende zaken
3.1 Belangrijke waarschuwing
Li-ion-accu's zijn duur en kunnen worden beschadigd als gevolg van diepontlading of overladen.
Schade als gevolg van een te hoge ontlading kan optreden als kleine belastingen (zoals alarmsystemen, relais, reservestroom van
bepaalde belastingen, terugstroom van acculaders of laadregelaars) de accu langzaam ontladen wanneer het systeem niet in gebruik is.
In geval van twijfel over mogelijke reststroom afgifte dient u de accu te isoleren door de accuschakelaar te openen, de accuzekering(en)
te trekken of de accuplus los te koppelen wanneer het systeem niet in gebruik is.
Restontlaadstroom is met name gevaarlijk als het systeem volledig is ontladen en de accu bijna leeg is. Na het uitschakelen
vanwege lage celspanning blijft er een capaciteitsreserve van ongeveer 1 Ah per 100 Ah accucapaciteit resterend in de accu. De
accu wordt beschadigd als de resterende capaciteitsreserve uit de accu wordt getrokken. Een reststroom van 10 mA kan
bijvoorbeeld een 200 Ah-accu beschadigen indien het systeem langer dan 8 dagen in ontladen toestand blijft.
2
3.3 DC-belastingen met externe aan-/uit terminals
DC-belastingen moeten worden uitgeschakeld of losgekoppeld in geval van dreigende cel-onderspanning.
Hiervoor kan de Lastontkoppelingsuitgang van de VE.Bus BMS worden gebruikt.
De lastontkoppeling is normaal gesproken hoog (gelijk aan de accuspanning) en wordt potentiaalvrij (= open circuit) in geval van
dreigende onderstroom van de cel (geen interne pull-down om het reststroomverbruik te beperken in geval van lage celspanning).
DC-belastingen met een externe aan-uit terminal die de belasting inschakelt wanneer de terminal omhoog wordt getrokken (de accuplus)
en schakelt deze uit wanneer de aansluitklem potentiaalvrij is en kan direct worden bediend met de lastontkoppelingsuitgang.
Zie bijlage voor een lijst van Victron-producten met dit gedrag.
Voor DC-belastingen met een externe aan/uit-terminal die de belasting inschakelt wanneer de aansluitklem wordt leeggetrokken (naar
een accumin) en wordt uitgeschakeld wanneer de aansluitklem potentiaalvrij is, kan de externe omvormende aan-uit-kabel worden
gebruikt. Zie de bijlage.
Opmerking: controleer de reststroom van de belasting wanneer in uitgeschakelde toestand. Na het uitschakelen van de lage celspanning blijft er
een capaciteitsreserve van ongeveer 1 Ah per 100 Ah accucapaciteit over in de accu. Een reststroom van 10 mA kan bijvoorbeeld een 200 Ah-accu
beschadigen indien het systeem langer dan 8 dagen in ontladen toestand blijft.
3.4 DC-belasting: ontkoppelen van de belasting met een BatteryProtect
Een BatteryProtect ontkoppelt de belasting wanneer:
ingangsspanning (= accuspanning) is gedaald tot onder een vooraf ingestelde waarde of wanneer
de externe aan/uit-terminal wordt leeggetrokken. De miniBMS kan worden gebruikt om de externe aan/uit-terminal te regelen
In tegenstelling tot een Cyrix of magneetschakelaar kan een BatteryProtect een last starten met een grote ingangscondensator zoals een
omvormer of een DC-DC-omvormer.
3.5 De LiFePO-accu opladen met een acculader
Opladen van de accu moet worden verminderd of gestopt in het geval van dreigende overbelasting van de cel of te hoge temperatuur.
Hiervoor kan de lastontkoppelingsuitgang van de VE.Bus BMS worden gebruikt.
De laadontkoppeling is normaal gesproken hoog (gelijk aan de accuspanning) en schakelt over op een open circuit in geval van mogelijke
overbelasting van de cel.
Acculaders met een externe aan/uit-aansluitklem die de lader activeert wanneer de aansluitklem omhoog wordt getrokken (naar de
accuplus) en wordt gedeactiveerd wanneer de aansluitklem potentiaalvrij blijft, kan direct worden bediend met de
laadontkoppelingsuitgang.
Zie bijlage voor een lijst van Victron-producten met dit gedrag.
Acculaders met een externe aansluitklem die de acculader activeert wanneer de aansluitklem wordt leeggetrokken (tot een accumin) en
wordt gedeactiveerd wanneer de aansluitklem potentiaalvrij blijft, kan de aan/uit-kabel van de omvormende externe aan-uit kabel
worden gebruikt. Zie de bijlage.
Als alternatief, kan een Cyrix-Li-Charge worden gebruikt:
De Cyrix-Li-Charge is een unidirectionele accuscheider die tussen een acculader en de LiFePO-accu wordt geplaatst. Het wordt
uitsluitend ingeschakeld wanneer de laadspanning van een acculader aan de kant van de laadaansluitklem aanwezig is. Een
klemaansluiting verbonden met de Laad Ontkoppeling van het BMS.
3.6 De LiFePO-accu opladen met een dynamo
Zie afbeelding 6.
De Cyrix-Li-ct wordt aanbevolen voor deze toepassing.
De microprocessor gestuurde Cyrix-Li-ct bevat een timer- en detectie van spanningsontwikkeling. Dit voorkomt veelvuldig schakelen als
gevolg van een daling van de systeemspanning bij aansluiting op een lege accu.
3.7 Accu
Bij meerdere parallel geschakelde accu's of serieconfiguratie moeten de twee M8 ronde contactsnoersets van elke accu in serie worden
geschakeld (serieschakeling).
Sluit aan op de BMS met de twee resterende snoeren.
4. Systeem voorbeelden
Afbeelding 1: Voorbeeld van toepassing van een losgekoppeld DC-systeem, met systeem aan-/uitschakelaar tussen L-klem en accumin
3
EN NL FR DE ES SE
Afbeelding 2: Voorbeeld van een toepassing voor een voertuig of boot, met aan/uit-schakelaar aangesloten op de L-klem en accumin
Afbeelding 3: Toepassingsvoorbeeld voor een voertuig of boot, met aan-/uitschakelaar tussen H en L
4
Afbeelding 4: Zonnetoepassing met twee MPPT 150/85 CAN-bus
De MPPT 150/85 CAN-bus heeft een externe aan-uit-poort die rechtstreeks door het VE.Bus BMS kan worden bediend
5. Specificaties
miniBMS
Normaal gesproken bedrijfsingangsspanningsbereik
(Vbat)
8 70 V DC
Stroomverbruik, de normale werking 2.2 mA (exclusief lastuitgang en laaduitgangsstroom)
Stroomverbruik, lage celspanning 1,2 mA
Stroomverbruik, externe uitschakelaar 1,2 mA
Lastuitgang
Normaal gesproken hoog (Vbat 0,1 V)
Bronstroomlimiet: 1 A (niet beveiligd tegen kortsluiting)
Zinkstroom: 0 A (uitgang potentiaalvrij)
Laaduitgang
Normaal hoog (Vbat 0,6 V)
Bronstroomlimiet: 10 mA (beveiligd tegen kortsluiting)
Zinkstroom: 0 A (uitgang potentiaalvrij)
Vooralarm
Normaal gesproken potentiaalvrij
In geval van alarm: uitgangsspanning Vbat -0.1 V
Maximale uitgangsstroom: 1 A (niet beveiligd tegen kortsluiting)
Systeem aan/uit:
Afstandsbediening L en Afstandsbediening H
Gebruik modi van het aan-uit systeem:
a. AAN wanneer de L en H terminal onderling zijn verbonden (schakelaar of relaiscontact)
b. AAN wanneer de L-aansluiting naar de accumin wordt getrokken (V< 3,5 V)
c. AAN wanneer de H-terminal hoog is (2,9 V < VH < Vbat)
d. UIT in alle andere omstandigheden
ALGEMEEN
Bedrijfstemperatuur -20 tot +50°C 0 - 120°F
Vochtigheid Max. 95% (niet-condenserend)
Beschermingsgraad IP20
BEHUIZING
Materiaal en kleur ABS, mat zwart
Gewicht 0,1 kg
Afmetingen (h x b x d) 106 x 42 x 23mm
NORMEN
Normen: Veiligheid
Emissie
Immuniteit
Auto-industrie
EN 60950
EN 61000-6-3, EN 55014-1
EN 61000-6-2, EN 61000-6-1, EN 55014-2
Verordening UN/ECE-R10 herz.4
5
EN NL FR DE ES SE
NL
Bijlage:
1. Belastingen die direct kunnen worden bestuurd door de Lastontkoppelingsuitgang van de BMS
Omvormers:
Alle Phoenix-omvormers VE.Direct
Sluit aan op de linker aansluitklem van het 2-polige contact
Phoenix 12/800; 24/800; 48/800
Phoenix 12/1200; 24/1200; 48/1200
Sluit aan op de rechter aansluiting van het 2-polige contact
DC-DC-omvormers:
Alle Tr-type DC-DC-omvormers met extern aan/uit-contact.
en Orion 12/24-20; 24/12-25; 24/12-40; 24/12-70
Aansluiten op aansluiting H van het 2-polige contact
Accubescherming en Smart BatteryProtect
Aansluiten op de rechter aansluitklem respectievelijk op aansluitklem H
van het 2-polige contact
Cyrix-Li-belasting
Maak verbinding met de bedieningsingang
2. Belastingen waarvoor een omvormer externe aan-uit-kabel nodig is (Artikelnummer ASS030550100)
Phoenix 12/180; 24/180; 12/.250; 24/350
Alle Phoenix VE.Bus-omvormers van 3 kVA en hoger (zie fig 4)
3. Zonnelaadregelaars die direct kunnen worden aangestuurd via de Laadontkoppelingsuitgang
BlueSolar MPPT 150/70 en 150/80 CAN-bus
Verbind de linker aansluitklem van het 2-polige contact (B+)
SmartSolar MPPT 150/45 en hoger, Smart Solar MPPT 250/60 en hoger
Sluit aan op de rechter aansluitklem (gemarkeerd met + of H) van het 2-polige contact
4. Zonnelaadregelaars waarvoor een VE.Direct niet-omvormende externe aan-uit-kabel nodig is
(artikelnummer ASS030550310)
Alle BlueSolar-modellen, met uitzondering van de twee CAN-bus modellen BlueSolar MPPT 150/70 en 150/80 CAN-bus
SmartSolar MPPT tot 150/35
5. Acculaders
Voor Skylla TG-acculaders een
niet-omvormende externe aan-uit-kabel nodig
(artikelnummer ASS030550200)
Voor Skylla-i-acculaders een
Skylla-i externe aan-uit-kabel nodig
(artikelnummer ASS030550400)
Andere acculaders:
Gebruik een Cyrix-Li-Charge
1
EN NL FR DE ES SE
1. Description générale
Une alternative au BMS du VE.Bus à la fois simple et peu coûteuse
Le miniBMS peut remplacer le BMS du VE.Bus dans plusieurs applications. Il n'est cependant pas adapté pour être utilisé avec
des convertisseurs/chargeurs MultiPlus et Quattro avec VE.Bus avec VE.Bus : il ne dispose d'aucune interface VE.Bus.
Le miniBMS est conçu pour travailler avec des batteries Victron Smart LiFePo4 disposant de connecteurs circulaires M8.
Le miniBMS dispose de deux sorties comme le BMS du VE.Bus.
Sortie de déconnexion de la charge
La sortie de la charge consommatrice est normalement élevée, et elle devient flottante en cas de risque imminent de sous-tension sur
la(les) cellule(s) (par défaut 2,8 V/cellule, valeur ajustable sur la batterie entre 2,6 et 2,8 V par cellule). Courant maximal : 1A. La sortie
de la charge est protégée contre les courts-circuits.
La sortie de la charge peut être utilisée pour contrôler :
Un relais ou un contacteur de courant élevé.
L'entrée d'allumage/arrêt à distance d'un BatteryProtect, d'un convertisseur ou d'un convertisseur CC-CC ou d'autres charges.
(Un câble inverseur ou non inverseur d'allumage/arrêt peut être nécessaire. Veuillez consulter le manuel)
Sortie de préalarme
La sortie de préalarme est normalement flottante, et elle devient élevée en cas de risque imminent de sous-tension sur la(les)
cellule(s) (par défaut 3,1 V/cellule, valeur ajustable sur la batterie entre 2,85 et 3,15 V par cellule). Courant maximal : 1 A (non
protégée contre les courts-circuits).
Le retard minimal de déconnexion entre la préalarme et la déconnexion de la charge est de 30 secondes.
Sortie de déconnexion de la charge
La sortie du chargeur est normalement élevée et elle devient flottante en cas de surtension ou surchauffe imminente. Courant
maximal : 10mA.
La sortie du chargeur n'est pas adaptée pour alimenter une charge inductive telle qu'une bobine de relais.
La sortie du chargeur peut être utilisée pour contrôler :
L'allumage/arrêt à distance d'un chargeur.
Un relais de charge Cyrix-Li.
Un coupleur de batterie Cyrix-Li-ct.
Entrée d'allumage/arrêt du système
L'entrée d'allumage/arrêt du système contrôle les deux sorties. Lorsqu'elle est éteinte, les deux sorties seront flottantes de
manière à ce que les charges et les chargeurs soient éteints.
L'allumage/arrêt du système dispose de deux bornes : L à distance, et H à distance.
Un interrupteur d'allumage/arrêt à distance ou un contact de relais peut être raccordé entre les bornes L et H.
Il est également possible que la borne H puisse être commutée sur la borne positive de la batterie, ou que la borne L le soit sur
la borne négative de la batterie.
Protège des systèmes de 12V, 24V et 48V
Plage de tension d'exploitation : de 8 à 70 VCC.
Voyants LED
Charge allumée (bleu) : Sortie de charge élevée (tension de cellule >2,8 V, réglable sur la batterie).
Temp ou OVP (rouge) : Sortie du chargeur flottante (en raison de la surchauffe des cellules (>50 ºC) ; de la
température insuffisante des cellules (<5 ºC) ou de la surtension des cellules).
2. Consignes de sécurité
L'installation doit respecter strictement les réglementations internationales en matière de sécurité conformément aux exigences
relatives au boitier, à l'installation, à la ligne de fuite, au jeu, aux sinistres, aux marquages et à la séparation de l'application
d'utilisation finale. L'installation doit être réalisée uniquement par des techniciens qualifiés et formés. Arrêtez le système et
vérifiez les risques liés aux tensions avant de modifier toute connexion.
1. Ne pas ouvrir la batterie au lithium-ion.
2. Ne pas décharger une batterie au lithium-ion neuve tant qu'elle n'a pas été d'abord entièrement chargée.
3. Charger uniquement dans les limites spécifiées.
4. Ne pas installer la batterie au lithium-ion à l'envers.
5. Vérifier si la batterie au lithium-ion a été endommagée durant le transport.
3. Éléments à prendre en compte
3.1 Avertissement important
Les batteries au lithium-ion sont chères et elles peuvent être endommagées par une décharge ou charge excessive.
Des dommages dus à une décharge excessive peuvent survenir si de petites charges (par ex. des systèmes d'alarme, des
relais, un courant de veille de certaines charges, un courant de rappel absorbé des chargeurs de batterie ou régulateurs de
charge) déchargent lentement la batterie quand le système n'est pas utilisé.
En cas de doute quant à un risque d'appel de courant résiduel, isolez la batterie en ouvrant l'interrupteur de batterie, en tirant
le(s) fusible(s) de la batterie ou en déconnectant le pôle positif de la batterie si le système n'est pas utilisé.
Un courant de décharge résiduel est particulièrement dangereux si le système a été entièrement déchargé et qu'un
arrêt a eu lieu en raison d'une tension faible sur une cellule. Après un arrêt dû à une tension de cellule trop faible, une
réserve de puissance d'environ 1 Ah par batterie de 100 Ah est laissée dans la batterie. La batterie sera endommagée
si la réserve de puissance restante est extraite de la batterie. Par exemple, un courant résiduel de 10 mA peut
endommager une batterie de 200 Ah si le système est laissé déchargé pendant plus de 8 jours.
3.3 Charges CC avec des bornes d'allumage/arrêt (on/off) à distance
Les charges CC doivent être éteintes ou débranchées en cas de sous-tension imminente sur les cellules.
La sortie de déconnexion de charge du VE.Bus BMS peut être utilisée à cette fin.
2
La tension de déconnexion de la charge est normalement élevée (égale à la tension de batterie) et elle devient flottante (=
circuit ouvert) en cas de sous-tension imminente sur les cellules (pas de réduction de niveau interne afin de limiter la
consommation de courant résiduel en cas de tension faible des cellules).
Les charges CC avec une borne d'allumage/arrêt à distance, qui active la charge quand la borne est à son niveau élevé (au
pôle positif de la batterie) et qui la désactive si la borne est flottante, peuvent être contrôlées directement avec la sortie de
déconnexion de la charge.
Voir l'annexe pour une liste des produits Victron présentant ce comportement.
Pour les charges CC avec une borne d'allumage/arrêt à distance qui allume la charge quand la borne est à son niveau bas (au
pôle négatif de la batterie) et qui l'éteint si la borne est flottante, le câble inverseur d'allumage/arrêt à distance peut être
utilisé. Voir l’annexe.
Remarque : veuillez vérifier le courant résiduel de la charge quand elle est éteinte. Après un arrêt dû à une tension de cellule trop faible,
une réserve de puissance d'environ 1 Ah par batterie de 100 Ah est laissée dans la batterie. Par exemple, un courant résiduel de 10 mA
peut endommager une batterie de 200 Ah si le système est laissé déchargé pendant plus de 8 jours.
3.4 Charge CC : déconnexion de la charge avec BatteryProtect
Un dispositif BatteryProtect déconnectera la charge si :
la tension d'entrée (= tension de batterie) descend en dessous de la valeur préconfigurée, ou si la borne d'allumage/arrêt à
distance passe à son niveau bas. Le miniBMS peut être utilisé pour contrôler la borne d'allumage/arrêt à distance.
Contrairement à un Cyrix ou un contacteur, un BatteryProtect peut démarrer une charge avec un grand condensateur d'entrée
tel qu'un convertisseur ou un convertisseur CC-CC.
3.5 Charger la batterie LiFePO avec un chargeur de batterie
La charge de la batterie doit être réduite ou arrêtée en cas de surtension ou surchauffe imminente des cellules.
La sortie de déconnexion de charge du VE.Bus BMS peut être utilisée à cette fin.
La déconnexion de charge est normalement élevée (égale à la tension de la batterie) et elle commute à l'état de circuit ouvert
en cas de surtension imminente sur une cellule.
Les chargeurs de batterie ayant une borne d'allumage/arrêt à distance qui active le chargeur quand la borne est à son niveau
élevé (au pôle positif de la batterie) et qui le désactive si la borne est laissée flottante peuvent être contrôlés directement
avec la sortie de déconnexion de charge.
Voir l'annexe pour une liste des produits Victron présentant ce comportement.
Pour les chargeurs de batterie ayant une borne à distance qui active le chargeur si la borne est à son niveau bas (au pôle
négatif de la batterie) et qui le désactive si la borne est laissée flottante, le câble inverseur d'allumage/arrêt à distance peut
être utilisé. Voir l’annexe.
Sinon, un Cyrix-Li-Charge peut être utilisé :
Le Cyrix-Li-Charge est un coupleur unidirectionnel qui est placé entre un chargeur de batterie et la batterie LiFePO. Il ne
s'active que si une tension de charge provenant d'un chargeur de batterie est présente sur sa borne côté-charge. Une borne de
contrôle se connecte à la sortie de déconnexion du chargeur du BMS.
3.6 Charger la batterie LiFePO avec un alternateur
Voir Illustration 6.
Il est recommandé d'utiliser le Cyrix-Li-ct pour cette application.
Le microprocesseur contrôlé par Cyrix-Li ct comprend une minuterie et une détection de tendance de la tension. Cela évitera
des commutations fréquentes dues à une chute de tension dans le système quand celui-ci se connecte à une batterie
déchargée.
3.7. Batterie
En cas de configuration en parallèle et/ou en série de plusieurs batteries, les deux ensembles de conducteurs circulaires M8 de
chaque batterie doivent être connectés en série (connexion en guirlande).
Connectez au BMS les deux paires de conducteurs restant.
4. Exemples de système
Figure 1 : exemple d'application pour un système CC hors réseau avec un interrupteur d'allumage/arrêt
entre L et le pôle négatif de la batterie.
3
EN NL FR DE ES SE
Illustration 2 : Exemple d'application pour un véhicule ou un bateau avec un interrupteur
d'allumage/arrêt entre la borne L et le pôle négatif de la batterie
Illustration 3 : exemple d’application pour un véhicule ou un bateau avec un interrupteur marche/arrêt entre H et L.
4
Illustration 4 : application solaire avec deux MPPT 150/85 avec un bus CAN.
Le MPPT 150/85 CAN-bus dispose d'un port d'allumage/arrêt à distance qui peut être directement contrôlé par le BMS du
VE.Bus.
5. Spécifications
miniBMS avec préalarme
Plage de tension d'entrée dans des conditions
d'exploitations normales (Vbat)
8 70 VCC
Appel de courant, fonctionnement normal 2,2 mA (sans compter le courant de sortie de la charge et celui du chargeur)
Appel de courant, tension de cellule faible 1,2 mA
Appel de courant, option à distance éteinte 1,2 mA
Sortie de la charge
Normalement élevée (Vbat – 0,1 V)
Limite de courant de source : 1 A (non protégée contre les courts-circuits).
Courant absorbé : 0A (sortie flottante)
Sortie du chargeur
Normalement élevée (Vbat – 0,6 V)
Limite de courant de source : 10 mA (protégée contre les courts-circuits).
Courant absorbé : 0A (sortie flottante)
Pré-alarme
Flottante en général
En cas d'alarme : tension de sortie Vbat -0,1
Courant maximal de sortie 1 A (non protégée contre les courts-circuits).
Allumage/arrêt du système :
L à distance, et H à distance
Modes d'utilisation de l'allumage/arrêt à distance :
a. ON si les bornes L et H sont connectées entre elles (interrupteur ou contact de
relais)
b. ON si la borne L est raccordée à la borne positive de la batterie (V< 3,5 V)
c. ON si la borne H présente une tension élevée (2,9 V < VH < Vbat)
d. OFF (arrêté) dans tous les autres cas.
GÉNÉRAL
Température d'exploitation -20 à +50°C 0 - 120°F
Humidité 95 % max. (sans condensation)
Degré de protection IP20
BOÎTIER
Matériel et couleur ABS, noir mat
Poids 0,1kg
Dimensions (h x l x p) 106 x 42 x 23mm
NORMES
Normes : Sécurité
Émission
Immunité
Automobile
EN 60950
EN 61000-6-3, EN 55014-1
EN 61000-6-2, EN 61000-6-1, EN 55014-2
Réglementation UN/ECE-R10 Rév.4
5
EN NL FR DE ES SE
FR
Annexe :
1. Charges pouvant être contrôlées directement par la sortie de déconnexion de la charge du
BMS.
Inverseurs :
Tous les convertisseur Phoenix VE.Direct.
Raccordez la borne de gauche au connecteur à deux pôles
Phoenix 12/800 ; 24/800 ; 48/800
Phoenix 12/1200 ; 24/1200 ; 48/1200
Raccordez la borne de droite au connecteur à deux pôles
Convertisseurs CC/CC :
Tous les convertisseurs CC de type Tr ayant un connecteur d'allumage/arrêt à distance,
et les Orion 12/24-20 ; 24/12-25 ; 24/12-40 ; 24/12-70
Raccordez la borne H du connecteur à deux pôles
BatteryProtect et Smart BatteryProtect
Raccordez la borne de droite à la borne H
du connecteur à deux pôles
Cyrix - Li-Load
Raccordez à l'entrée de contrôle.
2. Charges pour lesquelles un câble inverseur d'allumage/arrêt à distance est nécessaire
(référence de l'article ASS030550100)
Phoenix 12/180 ; 24/180 ; 12/.250 ; 24/350
Tous les convertisseurs Phoenix VE.Bus ayant une capacité nominale de 3 kVA et plus (voir l'Illustration 4).
3. Contrôleurs de charge solaires pouvant être contrôlés directement par la sortie de
déconnexion du chargeur.
BlueSolar MPPT 150/70 et 150/80 CAN-bus
Raccordez la borne de gauche au connecteur à deux pôles (B+).
SmartSolar MPPT 150/45 et version supérieure, Smart Solar MPPT 250/60 et version supérieure
Raccordez la borne de droite (indiquée par + ou H) au connecteur à deux pôles.
4. Contrôleurs de charge solaire pour lesquels un câble inverseur d'allumage/arrêt à distance
VE.Direct est nécessaire.
(référence de la pièce ASS030550400)
Tous les modèles BlueSolar, sauf les deux modèles Bus.CAN, MPPT BlueSolar 150/70 et Bus-Can 150/80.
SmartSolar MPPT jusqu'à 150/35
5. Chargeurs de batterie
Pour les chargeurs de batterie Skylla TG, un
câble non inverseur d'allumage/arrêt à distance est nécessaire
(Référence de la pièce ASS030550200)
Pour les chargeurs de batterie Skylla-i, un
câble Skylla-i d'allumage/arrêt à distance est nécessaire
(Référence de la pièce ASS030550400)
Autres chargeurs de batterie :
utilisez un Cyrix-Li-Charge
/