ABB ACS880-01drives, ACS880-04 drive modules Application Manual

  • Hello! I am an AI chatbot trained to assist you with the ABB ACS880-01drives Application Manual. I’ve already reviewed the document and can help you find the information you need or explain it in simple terms. Just ask your questions, and providing more details will help me assist you more effectively!
ABB industrial drives
Application guide
ACS880-01 drives and ACS880-04 drive modules
Common DC systems
List of related manuals
You can find manuals and other product documents in PDF format on the Internet. See section
Document library on the Internet on the inside of the back cover. For manuals not available in the
Document library, contact your local ABB representative.
Drive hardware manuals and guides Code (English)
ACS880-01 hardware manual 3AUA0000078093
ACS880-01 quick installation guide for frames R1 to R3 3AUA0000085966
ACS880-01 quick installation guide for frames R4 and R5 3AUA0000099663
ACS880-01 quick installation guide for frames R6 to R9 3AUA0000099689
ACS880-01 assembly drawing for cable entry boxes of IP21
frames R5 to R9
3AUA0000119627
ACS880-04 drive modules (200 to 560 kW, 300 to 700 hp)
hardware manual
3AUA0000128301
ACS880-04 drive modules (200 to 560 kW, 300 to 700 hp)
quick installation guide
3AUA0000128301
ACS-AP assistant control panels user’s manual 3AUA0000085685
Drive firmware manuals and guides
ACS880 primary control program firmware manual 3AUA0000085967
Quick start-up guide for ACS880 drives with primary control
program
3AUA0000098062
Option manuals and quides
ACS880-01 drives and ACS880-04 drive modules Common
DC systems application guide
3AUA0000127818
Manuals and quick guides for I/O extension modules,
fieldbus adapters, etc.
ACS880-04 manuals
ACS880-01 manuals
Application guide
ACS880-01 drives and ACS880-04 drive modules
Common DC systems
3AUA0000127818 Rev B
EN
EFFECTIVE: 2014-04-17
2014 ABB Oy. All Rights Reserved.
Table of contents
5
Table of contents
List of related manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1. Introduction to the manual
Contents of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Safety instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Target audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Contents of the manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Related documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Categorization by frame size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Quick planning guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2. Operation principle and hardware description
Contents of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Operation basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Overview of the common DC system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Overview diagram of the common DC system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Benefits of the common DC system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Challenges of the common DC system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Overview diagram of the drive main circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Charging circuit types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Type A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Type B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Brake chopper types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3. Planning – basics
Contents of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Defining the DC link duty cycle and key variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Defining the DC link duty cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
DC link duty cycle diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
DC link key variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Selecting the drives which are connected to AC power line . . . . . . . . . . . . . . . . . . . . . . 21
The selection rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Calculating the rectifier power capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Verifying the charging capacity of the common DC system . . . . . . . . . . . . . . . . . . . . 22
Checking the total charging resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Checking the peak AC current at charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Checking the charging energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Handling the surplus energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Defining the energy absorbing capacity of the common DC link . . . . . . . . . . . . . . . . 26
Defining the maximum DC link voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Selecting the brake choppers and resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Brake chopper selection formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6
Brake resistor selection formulas - system with one brake chopper . . . . . . . . . . 28
Brake resistor selection formulas - system with several brake choppers and
resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4. Planning – additional instructions
Contents of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Requirements for the AC input connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Constructing the DC link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Selecting the fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Selecting the AC input fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Selecting the DC fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Phase loss protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Selecting the power cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
DC contactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
DC link separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Brake resistor protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Electromagnetic Compatibility (EMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Connecting the Ready and Start enable signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Setting the drive parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5. Technical data
Contents of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Rectifier power capacity (Prec,ave and Prec,max) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Power correction factor (k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Frames R1 to R5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Frames R5 to R9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Frames R10 to R11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
DC contactors between the drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Frames R1 to R5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Frames R5 to R9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Frames R10 to R11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Charging resistance values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Charging circuit Er values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
DC link capacitance values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Brake chopper power ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
DC voltage limits of the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
DC fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Further information
Product and service inquiries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Product training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Providing feedback on ABB Drives manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Document library on the Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Introduction to the manual 7
1
Introduction to the manual
Contents of this chapter
This chapter contains information on this manual and a quick guide for planning a common
DC system.
Applicability
This manual is applicable with the ACS880-01 drives and ACS880-04 drive modules.
Safety instructions
Obey the safety instructions in the drive’s hardware manual.
Target audience
This manual is written for people who plan common DC systems. We expect the reader to
be a qualified electrical engineering professional.
Contents of the manual
The chapters in this manual are:
Introduction to the manual
Operation principle and hardware description
Planning – basics
Planning – additional instructions
Technical data.
8 Introduction to the manual
Related documents
See section List of related manuals on page 2.
Categorization by frame size
Some information in this manual is only valid for certain drive frame sizes. Such
information includes the frame size indication, for example, frame R1. The type
designation label of the drive shows the frame size. The frame size for each drive type is
given in the drive hardware manual.
Quick planning guide
No. Step
1. Define a duty cycle diagram for each motor (shaft power). Select the motors and drives as
usual with the DriveSize PC tool by ABB. Do not consider the common DC system yet.
2. Define a DC link duty cycle for the common DC system, and define the key variables
P
mot,ave
, P
mot,max
, P
gen,ave
and P
gen,max
.
See section Defining the DC link duty cycle and key variables on page 18.
3. Select the drives that you will connect to the AC power line.
See section Selecting the drives which are connected to AC power line on page 21.
4. Define the means to handle the surplus DC link energy (motor braking energy).
See Handling the surplus energy on page 25.
5. Design the construction of the common DC link.
See section Constructing the DC link on page 31.
6. Select the fuses and phase loss guards.
See section Selecting the fuses on page 32 and section Phase loss protection on page 33.
7. Examine the need for DC contactors. If needed, select them.
See section DC contactors on page 34.
8. Plan the interlocking and safety.
•See Connecting the Ready and Start enable signals on page 36.
Consider the use of safety circuits (such as emergency stop or Safe torque off) or control
signal interlocking for safe and reliable operation.
9. Select the measures necessary for the EMC. See section Electromagnetic Compatibility
(EMC) on page 35.
10. Repeat all design steps to verify the design.
Introduction to the manual 9
Terms and abbreviations
Note: The symbols used in the equations and formulas are explained in the context of use.
Term /
abbreviation
Description
AVR Automatic voltage regulator
EMC Electromagnetic compatibility
Motoring mode Motor operation mode in which the motor rotates the load and takes power from
the drive DC link (normal operation).
Generating mode Motor operation mode in which the motor decelerates (brakes) the load and
generates energy back to the drive DC link.
This effect is also seen when the load is held at a fixed speed, but the
mechanical load is trying to “pull” the motor to a higher speed, sometimes
referred to as overhauling. Overhauling loads return energy to the DC link as
well.
10 Introduction to the manual
Operation principle and hardware description 11
2
Operation principle and
hardware description
Contents of this chapter
This chapter contains a description of a common DC system. It also describes the drive
features which are relevant in a common DC system.
12 Operation principle and hardware description
Operation basics
The main circuit of the drive consists of a rectifier, a DC link and an inverter. The rectifier
(input bridge) converts the alternating current and voltage to direct current and voltage for
the DC link. The DC capacitors in the DC link smooth the ripple and form a steady energy
and power supply for the inverter. The inverter converts the intermediate circuit DC power
to AC power for the motor.
From a common DC system point of view, the motor has two main operation modes: the
motoring mode and the generating mode. In the motoring mode, the motor rotates the
machinery. The energy flows from the AC power line to the motor through the rectifier, DC
link and the inverter. In the generating mode, the machinery rotates the motor. This is the
case for example when a hoist motor of a crane lowers a load (overhauling load). To keep
the rotation speed steady, the motor brakes. During the braking, the motor generates
energy back to the inverter which then conveys the energy further to the DC link.
In the generating mode the DC capacitors are charged by the inverters and the DC link
voltage starts to rise. To prevent an excessive voltage rise, the drive must convey the
surplus energy away from the DC link. There are three options: to convey the energy to
the AC power line, to a brake resistor or to another drive. For the first option you need to
have a special type of drive in use, a regenerative drive. If you have an ordinary drive with
a rectifier (diode input bridge), regeneration is not possible so only the two other options
remain. If you connect a brake chopper and resistor to the DC link, you can dissipate the
energy in the resistor as heat. If you connect the DC link of the drive to another drive, you
can use the surplus energy for charging the DC capacitors of the other drive and use the
energy to rotate its motor. This is a common DC system.
No. Description
1. AC power line
2. Rectifier (input bridge)
3. DC link including DC capacitors (a), its charging circuit (b) and brake chopper (c)
4. Inverter
5. Motor
L1
L2
L3
U
V
W
R-
UDC+
R+
UDC-
M
~3
~3
1 2 3 4 5
a
b
c
Operation principle and hardware description 13
Overview of the common DC system
In a common DC system, you connect the DC links of several drives together in order to
share their DC link energy storages. In addition to this basic configuration, there is a wide
variety of additional choices with which you can affect the performance of the system. For
example, in certain applications you can:
connect only one of the drives to the AC power line, and supply the other drives only
through the common DC link
connect a shared brake chopper and resistor to the common DC link to absorb the
occasional surplus energy pulses that you cannot use in the drives
connect one regenerative drive to a common DC link to convey the surplus motor
braking energy pulses to the AC power line instead of brake resistors
supply the DC link from a separate DC source.
Overview diagram of the common DC system
The diagram below shows an example of a common DC system.
1
2
3
4 5
1 AC power line
2 Common DC link
3Drive
4Motor
5 Brake resistor
14 Operation principle and hardware description
Benefits of the common DC system
Benefits of the common DC system:
You can save energy by using the braking energy of one drive in the others - less
energy needs to be taken from the AC power line.
DC capacitors of all drives form a high-capacity energy storage that can absorb short
braking pulses of individual drives without a need for a brake chopper and resistor.
If you need brake choppers and resistors, they can be optimized for the whole system.
You do not have to use the chopper of every drive.
You do not necessarily need to connect every drive to the AC power line.
Challenges of the common DC system
Challenges of the common DC system:
You cannot operate any of the drives in the common DC system if one of the drives
connected to the AC power line has an active fault. See section Connecting the Ready
and Start enable signals on page 36.
If you have drives with different type of charging circuits in the system, and you want to
connect them to AC power line, you must add extra contactors to the system and
arrange their control: For power up and charging, you must disconnect the DC links of
the drives which have different type of charging circuits. You can connect the DC links
together only after charging. See sections Charging circuit types on page 15 and
Charging resistance values on page 43.
You must make sure that the load imbalance between the drives that are connected to
the AC power line is as small as possible. There is always slightly unequal AC input
current distribution due to differences in the input cables, chokes and input bridges’
forward bias characteristics. If the voltage reduction over the input cable, rectifier and
chokes is not the same in all drives, more current will flow through the rectifier which
has the lowest voltage reduction.
You must make sure that the common DC system complies with the relevant
regulations and directives. The compliance of individual drives does not guarantee or
cover the compliance of the common DC system.
If you supply the drives from a totally separate DC source, the DC source:
must be capable of powering the drives when motoring,
must be protected to prevent regeneration onto the DC from causing any damage,
or from effecting the devices supplying the DC source (for example AVR systems
on generators).
Operation principle and hardware description 15
Overview diagram of the drive main circuit
The overview diagrams below show the main circuits of the drive modules. The differences
between the drive modules, in regards of the use of the drives in a common DC system,
are the charging circuit and brake chopper designs.
Charging circuit types
Type A
Charging resistor is in the DC link (frame sizes R1 to R4).
Type B
Charging resistor is in parallel with the input bridge (frame sizes R5 and larger).
Brake chopper types
Brake chopper is included as standard in frame sizes R1 to R4.
Brake chopper is a factory-installed option for frame sizes R5 and larger (option
+D150).
L1
L2
L3
U
V
W
R-
UDC+
R+
UDC-
L1
L2
L3
U
V
W
BR-
UDC+
R+
UDC-
R1, …, R4
R5, …, R11
1
2
1
2
1 Charging resistor
2 Brake chopper
16 Operation principle and hardware description
Planningbasics 17
3
Planning – basics
Contents of this chapter
This chapter contains the basics of planning a common DC system.
See section Quick planning guide on page 8 for a summary of planning steps.
18 Planning – basics
Defining the DC link duty cycle and key variables
Defining the DC link duty cycle
1. Define the DC link duty cycle for each drive. See section DC link duty cycle diagram
on page 19. Use the duty cycle diagram of the motor shaft power and:
Add the inverter and motor losses during the motoring mode of the motor.
Subtract the inverter and motor losses during the generating mode of the motor.
2. Sum the DC link duty cycle diagrams of the individual drives to one common DC link
duty cycle diagram for the common DC system. See section DC link duty cycle
diagram on page 19.
3. On basis of the common DC link duty cycle diagram, define the key variables P
mot,ave
,
P
mot,max
, P
gen,ave
and P
gen,max
for the whole system. See section DC link key
variables on page 19.
Inverter losses
Motor losses
P
m
P
mot
k
eff
Efficiency factor (1/efficiency) to include drive and motor losses.
If not known, value 1.25 can be used
n Motor shaft speed [rpm]
P
dc
DC link power
P
mot
Power that the motor takes from the DC link
P
gen
Power that the motor supplies to the DC link
P
m
Motor mechanical shaft power
T Torque [Nm] on motor shaft
P
mot
= k
eff
× P
m
P
gen
=
k
eff
P
m
P
m
[kW] =
9550
T × n
Planningbasics 19
DC link duty cycle diagram
DC link key variables
P
mot
t
Drive a
Drive b
Drive c
Total
M
abc
M M
~
P
dc
P
dc
P
dc
~
P
gen
P
dc
P
mot
t
P
gen
P
mot
t
P
gen
P
mot
t
P
gen
P
mot
P
gen
M
M
M
a
b
c
~
~
P
br
P
mot
P
gen
P
rec
20 Planning – basics
Symbol Name Information
P
mot
Motoring power Power that the motors take from the common DC link
P
mot,ave
Average motoring
power
Average power that the motors take from the common DC link. See the
duty cycle diagram of the common DC link. Note: For long cycles
times, define P
mot,ave
over the worst-case 3 minutes time window.
P
mot,max
Maximum motoring
power
Maximum power that the motors take from the common DC link. See
the duty cycle diagram of the common DC link.
P
gen
Generating power Power that the motors supply to the common DC link
P
gen,ave
Average generating
power
Average power that the motors feed to the common DC link when they
are in generating mode (braking the load). See the duty cycle diagram
of the common DC link. Note: If you will use the brake choppers of the
drives in the system, determine P
gen,ave
over the worst-case 30
seconds time window.
P
gen,max
Maximum
generating power
Maximum power that the motors feed to the common DC link when they
are in generating mode (braking the load). See the duty cycle diagram
of the common DC link.
P
rec
Rectifier power Power that the drive input bridges (rectifiers) feed to the common DC
link. See section Selecting the drives which are connected to
AC power line on page 21 for the calculation instructions.
P
rec,ave
Average rectifier
power capacity
The drives that are connected to the AC power line can feed this
average power to the common DC link.
P
rec,max
Maximum rectifier
power capacity
The drives that are connected to the AC power line can feed this power
to the common DC link at the maximum.
P
br
Braking power Surplus power that the brake resistors take from the common DC link.
(Alternatively: Power that the drive feeds to the AC power line if a
regenerative type of drive is in use.) See section Handling the surplus
energy on page 25.
P
br,cont
Continuous braking
power
Continuous braking power that the brake resistors take from the
common DC link. The braking is continuous if the braking time exceeds
30 seconds.
P
br,max
Maximum braking
power
Maximum braking power that the brake resistors take from the common
DC link. Brake choppers withstand this braking power for 5 second
within every minute.
/