SICK EES37-2...EEM37-2... Motor feedback system rotary HIPERFACE DSL® Operating instructions

Type
Operating instructions
O P E R A T I N G I N S T R U C T I O N S e n
1 About this document
Please read these operating instructions carefully before using the safe motor
feedback system or mounting it, putting it into operation or servicing it. The manu‐
facturer can only guarantee the safety function if these operating instructions are
followed consistently.
This document is an original document.
1.1 Purpose of this document
These operating instructions provide qualified technical personnel of the machine
manufacturer or the machine operator with instructions regarding the safe mount‐
ing, electrical installation, commissioning, operation and maintenance of the safe
motor feedback system.
These operating instructions are to be made available to all those who work with
the safe motor feedback system.
Furthermore, planning and using safety-oriented sensors such as the safe motor
feedback system also requires technical skills that are not covered in this docu‐
ment.
The official, legal and safety-relevant regulations for mounting and operating the
safe motor feedback system must always be complied with.
1.2 Symbols and document conventions
WARNING
A safety note informs you of real-world specifications for safely mounting and
installing the safe motor feedback system. This is intended to protect you
against accidents. Read and follow the safety notes carefully.
NOTE
Indicates useful tips and recommendations.
b
Instructions for taking action are indicated by an arrow. Carefully read and
follow the instructions for action.
1.3 Associated documents
“HIPERFACE DSL
®
Safety” technical information, part number 8017596, as
of 02.2017 (or newer)
Whitepaper "Supplementary notes for EES/EEM37 Motor feedback sys‐
tems", part number 8021843, as of 10.2017 (or newer)
2 Safety information
This chapter concerns your own safety and the safety of the system operator.
2.1 General safety notes
The national and international legal specifications apply to the installation and
use of the motor feedback system, to its commissioning, and to recurring techni‐
cal inspections, in particular:
Machinery directive 2006/42/EC
Work Equipment Directive 2009/104/EC
Work safety regulations and safety regulations
Any other relevant safety regulations
The manufacturer and operator of the machine on which the safe motor feedback
system is used are responsible for coordinating and complying with all applicable
safety specifications and regulations, in cooperation with the relevant authorities.
The manufacturer of the drive system connected must have complied with the
safety requirements for the drive system design described in the implementation
manual, “HIPERFACE DSL
®
Safety”.
2.2 Intended use
The motor feedback system is ideal for the dynamic and precise operation of
servo-control circuits due to its equipment.
The overall system, consisting of encoder, evaluation system, servo inverter, and
motor, forms a control circuit.
The safety-oriented use of safe motor feedback systems with a HIPERFACE DSL
®
interface concerns application in combination with servo systems that work with
three-phase AC synchronous motors and alternatively AC asynchronous motors.
The following information can be derived from the digital position signals of a
motor feedback system connected directly to a motor shaft:
(Rotational) speed information and commuting information in AC synchro‐
nous motors
(Rotational) speed information in asynchronous motors
The safe motor feedback system can be used in conjunction with a drive system
in accordance with IEC 61800-5-2, in safety applications up to category 3 and
PL d in accordance with EN ISO 13849 or SIL
CL
3 in accordance with EN 62061.
The safety integrity level of the encoder is SIL2. The systematic capability of the
encoder is SC 3. Only when applied in redundant architecture, the encoder can be
utilized for SIL3 applications, otherwise, i.e. when used standalone, it shall be uti‐
lized maximum for SIL2 applications.
It fulfills the requirements of the Machinery Directive 2006/42/EC and provides
support for the drive system in ensuring:
The safety functions, based on the safe absolute position information or the
incremental position information of the motor feedback system. The safety
functions apply only to one motor revolution (singleturn).
In the case of safety functions that are based on the reliable multiturn
absolute position, the motor feedback system only supplies one channel
without safety-related diagnostics upon being switched on. A second channel
must be implemented by the user using other measures. This second chan‐
nel can be provided by the user by saving the position of the motor feedback
system before switching it off and comparing it to the starting position of the
motor feedback system when switching it on the next time. The multiturn
absolute position can only be used for safety-related purposes if the values
match. Otherwise, a reference run must be carried out by the user. If there is
no second channel for the multiturn absolute position, a reference run to
confirm the absolute position must be carried out each time the motor feed‐
back system is switched on.
The motor feedback system is not able to create a safe state for the drive system
independently. The drive system has to create the safe state as a response to an
error displayed by the motor feedback system.
WARNING
The safe motor feedback system may be used only within the limits of the
prescribed and specified technical data, dimensions and tolerances of the
dimensional drawings and operating conditions, and the specified tightening
torques must be complied with.
If used in any other way or if alterations are made to the device – including in
the context of mounting and installation – this will render void any warranty
claims directed to SICK STEGMANN GmbH.
2.3 Improper use
The motor feedback system must be mounted and adjusted exactly in accordance
with the specifications of the installation instructions. Every faulty installation or
faulty adjustment of the encoder can impair the specified functions and data; par‐
tial restriction or a total failure of the specified safety functions cannot be ruled
out in individual cases.
WARNING
If stimuli near the resonance frequency (resonance point > 1,100 Hz) cannot
be reliably ruled out in the application, suitable tests must be carried out for
the entire drive system before commissioning the system. Suitable corrective
measures must be installed.
WARNING
Violations of the specified accuracy of the position value in the vicinity of the
resonance frequencies can occur due to physical restraints. If the mechanical
stimulation in the vicinity of the resonance frequencies has a very high ampli‐
tude, faults or failures of the specified safety functions can occur. We recom‐
mend avoiding operation in the vicinity of the resonance frequencies or at
least limiting the amplitude.
2.4 Requirements for the qualification of personnel
The safe motor feedback system may be mounted, put into operation, checked,
maintained, or used only by qualified safety personnel. A qualified person
is someone who has taken part in adequate technical training
has been instructed by a machine operator in machine operation and the
applicable safety guidelines and
can access these operating instructions.
3 Project planning
WARNING
The supply voltage must be generated from PELV systems (EN 50178). The
motor feedback system conforms to protection class III in accordance with EN
61140. If the supply voltage is not generated from PELV systems, the user
must take other measures to ensure safe disconnection for live parts.
WARNING
Use only temperature sensors with doubled or reinforced insulation because
there is no galvanic separation of the temperature sensor in the motor feed‐
back system.
The power supply unit current used for the motor feedback system must be
limited to a maximum continuous current of 1 A, either by the power supply
unit itself or using a fuse.
NOTE
When configuring the switch-on current, observe figure 1 .
8021265/15SU/2020-01-14/de, en, es, fr, it EES37-2... EEM37-2... | SICK 5
Figure 1: Configuring the switch-on current
Ensure that the supply voltage to the motor feedback system’s DSL female con‐
tact (10) is from +7 V to +12 V.
4 Mounting
This chapter describes the mounting of the safe motor feedback system.
NOTE
Depending on the motor design, it may be necessary to perform the electrical
installation before the mechanical mounting.
NOTE
If the safe motor feedback system has to be removed, the mounting steps are
to be carried out in reverse order.
NOTE
No impacts or shocks are permitted during the mounting of the motor feed‐
back system.
4.1 Safety
NOTE
Note the following safety notes for the side fixing screws (6) used during
mounting:
Minimum strength class of 8.8
The screw-in depth must be at least 5 thread turns; select screw lengths
appropriate for the installation conditions.
The tightening torque applies if there is already a thread in the motor
end plate. If there is no thread, the additional rolling torque depending
on the material of the motor end plate and the drill diameter for the fix‐
ing screw (6) must also be taken into account.
Secure screw connections (6) from loosening using screw adhesive.
Spring washers and toothed washers are not sufficient for securing
screws!
NOTE
Note the following safety notes for the accessory screw (7) (e.g., 2077358,
2088239 or 2088240) used during mounting:
No additional screw locking device is required for the screw (7)!
The screw (7) must not be used after the use-by date due to its coating.
Only use the screw (7) one time. After removing the motor feedback sys‐
tem:
°
Clean the residue off of the affected threads on the drive shaft.
°
Use a new (unused) screw on the thread during the remounting
process.
Spring washers and toothed washers are not sufficient for securing
screws!
The material used for the motor shaft must have a minimum tensile
strength of 530 MPa (e.g. structural steel, alloyed steel for quenching
and tempering or alloyed case-hardening steels)
The female thread of the motor shaft must be free of dirt, grease, and
burrs. A thread tolerance of 6H must be ensured. For the geometry of
the thread, see the mounting suggestion (taper of the thread infeed in
line with mounting suggestion).
The screw should be mounted in one movement without axial feed.
Cure time: 6 hours at Rt. Final strength after 24 hours
4.2 Mounting procedure
Block the customer's drive shaft.
b
Carefully push the encoder (2) onto the motor shaft. Ensure that the center‐
ing collar (3) of the encoder is cleanly positioned in the centering part for the
motor and the conical shaft (4) is straight when inserted into the cone of the
motor shaft.
b
Turn the encoder (2) until the holes in the fastening straps (5) are positioned
over the motor’s mounting holes.
b
Attach the encoder housing to the motor end plate by alternately tightening
2 M3 screws (6). Tightening torque: min. 0.6 Nm
b
Pre-mount and tighten screw (7) 2077358, 2088239, or 2088240. Tighten‐
ing torque: 2.2 Nm ± 5%.
NOTE
For full load operation, the cure time of 6 h at room temperature must be
adhered to (see Note 4.1)
9
8
ß
4
3
5
2
6
7
1
á
à
â
ã
Figure 2: Mounting/removing the conical shaft
No. Designation No. Designation
1
Cover
8
DSL male connector
2
Encoder
9
DSL cable
3
Centering collar
ß
DSL female connector
4
Code disc cone
à
Temperature sensor male con‐
nector
5
Fastening straps
á
Temperature sensor female con‐
nector
6
M3 fixing screw
â
Temperature measuring point
7
Cone fixing screw
ã
Measurement point for shock
and vibration load
5 Electrical installation
NOTE
Observe the corresponding operating instructions of the external drive system
or the higher-order control system for the installation of the motor feedback
system.
NOTE
Make sure the affected machines/systems are in a de-energized state during
mounting!
5.1 Shielding connection
NOTE
A suitable encoder shield connection to the ground or to the motor shield is
required for smooth operation.
The encoder is connected to the motor housing via the screws (2).
5.2 Signals of the encoder system
The motor feedback system has the following signals:
HIPERFACE DSL
®
interface:
DSL+: Supply voltage for the encoder with superimposed positive data signal
DSL–: Encoder ground connection with a modulated negative data signal
Temperature sensor:
T+: Positive potential for the passive temperature sensor/temperature resis‐
tor
T-: Negative potential for the passive temperature sensor/temperature resis‐
tor
5.3 Connection overview
5.3.1 Recommended components
Connector
Male connector Type
DSL JST GHR-04V-S
Temperature Harwin M80-XXX-02-XX
5.3.2 Temperature sensor
Figure 3: Device pin assignment
8021265/15SU/2020-01-14/de, en, es, fr, it EES37-2... EEM37-2... | SICK 6
PIN Signal
1 T+
2 T-
5.3.3 Connecting interfaces
NOTE
T
he motor feedback system enables a radial output (Fig. 5) of the electrical
connecting cables (9), (11).
Open the cover (1) using a screwdriver, if necessary (Diagram A).
While de-energized, insert the male connector (8) into the female connector
(10). If necessary, while de-energized, insert the male connector (11) into the
female connector (12).
Male/female connector position
Type Male connector Female connector
DSL 10 8
Temperature 12 11
Lead the DSL cable (9) and, if applicable, temperature sensor cable (11) out tak‐
ing into account the cutouts in the housing (2) and cover (1).
Close the cover (1).
6 Commissioning
Commissioning the safe motor feedback systems requires that the manufacturer
of t
he connected drive system has complied with the safety requirements for the
drive system design, as described in the “HIPERFACE DSL
®
Safety” implementa‐
tion manual.
6.1 Checking
Ensure that an EES37-2 / EEM37-2 safe motor feedback system and not an
EE
S37-0 / EEM37-0 standard motor feedback system is being used during com‐
missioning. This must be verified by reading out the type name (resource 083h).
In addition, the POST bit (Power-On-Self-Test) must be set for a EES37-2 /
EEM37-2 safe motor feedback system after an encoder RESET (hardware or soft‐
ware RESET). The POST bit can be acknowledged after a positive thorough check
(see "HIPERFACE DSL
®
Safety" implementation manual).
If the position offset of the motor feedback system is changed using the 101h
(“Set position”) resource or the 108h (“Factory settings”) resource, it is then nec‐
essary to verify that the sensor is providing the required position value.
Further inspection measures are not required during operation.
WARNING
T
he safe motor feedback system has a maximum mission time (chapter 9).
After this time, it must be taken out of service.
The motor feedback system’s construction year can be found in the serial
number (SN) on the device label or on the packaging label (YYWW).
YY = represents the year (without century)
WW = represents the calendar week of the last manufacturing process.
7 Servicing
The safe motor feedback system is maintenance-free. No repair option is provided
in t
he event of a defect. If any device should become defective, please contact us
so we can perform an analysis to determine the cause of failure.
8 Decommissioning
8.1 Protecting the environment
The motor feedback system has been designed to minimize its impact on the envi‐
r
onment. It consumes only a minimum of energy and natural resources.
b
Always act in an environmentally responsible manner at work. For this rea‐
son, please note the following information regarding disposal.
8.2 Disposal
Always dispose of unusable or irreparable devices in accordance with the applica‐
ble w
aste disposal regulations specific to your country.
NOTE
We will be glad to help you dispose of these devices. Please contact us.
9 Technical specifications
Technical specifications
EES37-2
...15 A
EES37-2
...17 A
EEM37-2
...15 A
EEM37-2
...17 A
Performance
Resolution per revolution 15 bit 17 bit 15 bit 17 bit
Signal noise (σ) ± 20"
14
Number of absolutely encodable revolu‐
tions
1 4,096
Measurement steps per revolution 32,768 131,072 32,768 131,072
System accuracy
Nominal length, 25 °C, filter setting
21 kHz
Nominal length, 25 °C, filter setting
1 kHz
±
280"
15
±
190"
15
±
240"
15
±
160"
15
±
280"
15
±
190"
15
±
240"
15
±
160"
15
Max. speed when switching on/resetting
the motor feedback system
0.5 rpm
Available memory 8,192 bytes
Interfaces
Counting direction
The counting direction is ascending for (clock‐
wise) shaft rotation, looking in direction “A”.
(see dimensional drawing)
Communication interface HIPERFACE DSL
®
16
Initialization time
500 ms
17
Measurement of external temperature resis‐
tance
18
Resolution
Measuring range
32 bit without sign (1 Ω)
0 ... 209,600 Ω
Mechanics/electronics
Supply voltage range 7 V … 12 V
Voltage ramp duty cycle 180 ms
19
Operating current
150 mA
20
Weight
0.06 kg
Rotor moment of inertia 1 gcm²
Angular acceleration
500,000 rad/s²
Operating speed
12,000 rpm
Permissible radial shaft movement ± 0.15 mm
Permissible axial shaft movement ± 0.5 mm
Ambient data
Operating temperature range –40 °C … +115 °C
21
Storage temperature range –40 °C … +125 °C (without packaging)
Operating altitude
2,000 m above sea level (80 kPa)
Relative humidity/condensation 85% / condensation not permitted
Resistance to shocks
100 g / 6 ms (in accordance with EN
60068-2-27)
Resistance to vibrations 50 g / 10 … 2.000 Hz (acc. to EN 60068-2-6)
EMC
EN 61000-6-2: 2016, EN 61000-6-4: 2006
and IEC 61000-6-7: 2014
22
14
N
ominal length, 25 °C, filter setting 21 kHz
15
See product information online (DE: 8021249; EN: 8021250) - diagrams on error limits
(default filter setting: 21 kHz)
16
A safety variant of the DSL Master IP Core must be implemented in the regulator in order to
connect to a drive controller, see “HIPERFACE DSL
®
Safety” implementation manual
(8017596).
17
Starting from when a permitted supply voltage has been reached.
18
Without sensor tolerance; at –17 °C ... +167 °C: NTC ± 2K (103 GT); PTC ± 3K (KTY
84/130)
19
Duration of voltage ramp between 0 V and 7 V.
20
When using the suggested input circuit as described in the “HIPERFACE DSL
®
Safety” imple‐
mentation manual (8017596, as of 2/2017).
21
The defined measuring point (13) on the motor feedback system must be used for measur‐
ing the operating temperature. (see mounting diagram, Fig. 6)
22
According to the listed standards, EMC is guaranteed if the motor feedback system with
mating plug inserted is connected to the central grounding point of the motor controller via
a cable shield. If other shielding concepts are used, users must perform their own tests.
Class A device.
8021265/15SU/2020-01-14/de, en, es, fr, it EES37-2... EEM37-2... | SICK 7
EES37-2
...15 A
EES37-2
...17 A
EEM37-2
...15 A
EEM37-2
...17 A
Enclosure rating
23
IP 30 with closed cover
(acc. to IEC 60529-1)
Safety-related parameters
Safety integrity level
24
SIL2 (IEC 61508), SIL
CL
3 (EN 62061)
Systematic suitability SC 3 (IEC 61508)
Performance level
24
PL d (EN ISO 13849)
Category 3 (EN ISO 13849)
PFH
D
: Probability of dangerous failure per
hourPerformance level
25
26 * 10
-9
T
M
(mission time)
20 years
Test rate 24 h
Maximum demand rate 216 µs
Safety-related resolution
26
Channel 1 = 15 or 17 bit, channel 2 = 15 or
17 bit
Safety-related accuracy
26
9.1 Dimensional drawings (all dimensions in mm)
Ø 36 (1.42)
Max. 27.75 (1.09)
5 (0.20)
3 (0.12)
7.1 (0.28)
8
(0.31)
Torx T10
38
±0.2
(1.50)
32.94
±0.05
(1.30)
Ø 6.5 (0.26)
M4
44 (1.73)
Ø 3.3 (0.13)
1
2
3
A
1:3
4
Figure 4: Dimensional drawing
1
Measuring point for vibrations
2
Design-related gap
3
Measuring point for operating temperature
4
Centering collar: Standard 1.5 mm (0.06") ; reduced 0.7 mm (0.02")
Min. 10 (0.39)
7.4
+0.2
(0.29)
1:3
0.4 (0.02)
0.2
±0.05
(0.01) x 45°
60°
1
3
9.462°–3'
Rz 6.3
(0.25)
A
2
2
A
2
A
Ø 6.5
(0.26)
2 (0.08)
3.4
-0.2
(0.13)
Ø 0.1 B
(2 x)
2 x
M3
A
Ø 33
+0.025
(1.30)
B
Min. Ø 8 (0.31)
Max. Ø 12.5 (0.49)
38 (1.50) 180°
Ø 5.5
(0.22)
M4
AØ 0.1
2
Figure 5: Conical shaft mounting specification
1
Nominal position
2
The size of the tolerance reduces the permissible wave movement,
see data sheet
3
Threaded holes in accordance with DIN 13 with recesses in accor‐
dance with DIN 76 min. 1.05 x thread diameter
The material used for the motor shaft must have a minimum tensile strength of
530 MPa (e.g. structural steel, alloyed steel for quenching and tempering or
alloyed case-hardening steels) Motor shield contact surface pressure > 200 MPa.
23
IP 54 required in installed state
24
For more detailed information on the exact configuration of your machine/unit, please con‐
sult your relevant SICK subsidiary.
25
At 60 °C ambient temperature.
26
The safety related accuracy indicates the maximum positioning error limit with which the
safety functions can be supported; corresponds to MSB 6 or 8, depending on the variant.
10 Ordering information
Carried out by
S Singleturn
MultiturnM
Version
0 Standard
2 SIL2
Connection type
Resolution
K Built into motor cable, 1 temperature sensor input
1 5 15 bits/rotation
17 bits/rotation
1 7
E E 3 7 - F O 0 A
Centering collar
A Standard
B Reduced
Figure 6: Ordering code
11 Accessories
Cone screw M4x14 10 pcs. (part number: 2088239)
Cone screw M4x14 100 pcs. (part number: 2077358)
Cone screw M4x14 500 pcs. (part number: 2088240)
Set of stranded wires (part number: 2079920)
You can find accessories in the product information at www.sick.com
12 Appendix
12.1 Scope of delivery
Safe motor feedback system
General safety notes
Operating instructions
Variants
Type Part no.
EEM37-2KF0A015A MOTOR FEEDBACK 1067124
EEM37-2KF0A017A MOTOR FEEDBACK 1067125
EES37-2KF0A015A MOTOR FEEDBACK 1067126
EES37-2KF0A017A MOTOR FEEDBACK 1067127
EES37-2KF0B015A MOTORFEEDBACK 1086283
EES37-2KF0B017A MOTORFEEDBACK 1086284
EEM37-2KF0B015A MOTORFEEDBACK 1086279
EEM37-2KF0B017A MOTORFEEDBACK 1086280
12.2 Conformities
The EES37-2 / EEM37-2 safe motor feedback systems were manufactured in
accordance with the following directives:
Machinery directive 2006/42/EC
EMC Directive: 2014/30/EU
The complete EU Declaration of Conformity is available from the SICK homepage
on the Internet:
www.sick.com
I N S T R U C C I O N E S D E U S O
e s
1 Acerca de este documento
Lea atentamente estas instrucciones de uso antes de trabajar con el sistema de
realimentación del motor seguro, montarlo, ponerlo en servicio o llevar a cabo
tareas de mantenimiento. El fabricante solo puede garantizar la función de seguri‐
dad si se siguen las indicaciones de estas instrucciones de uso de forma conse‐
cuente.
Esta es una traducción del documento original.
1.1 Finalidad de este documento
Estas instrucciones de uso indican al personal técnico cualificado del fabricante o
de la empresa explotadora de la máquina cómo llevar a cabo de forma segura el
montaje, la instalación eléctrica, la puesta en servicio, el funcionamiento y el
mantenimiento del sistema de realimentación del motor seguro.
Estas instrucciones de uso deben ponerse a disposición de todo el personal que
trabaje con el sistema de realimentación del motor seguro.
Además, para la planificación y la utilización de sensores de seguridad, como el
sistema de realimentación del motor seguro, es necesario contar con conocimien‐
tos técnicos previos, ya que estos no se incluyen en las presentes instrucciones.
Deben respetarse las disposiciones legales, oficiales y relativas a la seguridad
durante el montaje y el funcionamiento del sistema de realimentación del motor
seguro.
8021265/15SU/2020-01-14/de, en, es, fr, it EES37-2... EEM37-2... | SICK 8
  • Page 1 1
  • Page 2 2
  • Page 3 3
  • Page 4 4
  • Page 5 5
  • Page 6 6
  • Page 7 7
  • Page 8 8
  • Page 9 9
  • Page 10 10
  • Page 11 11
  • Page 12 12
  • Page 13 13
  • Page 14 14
  • Page 15 15
  • Page 16 16
  • Page 17 17
  • Page 18 18
  • Page 19 19
  • Page 20 20

SICK EES37-2...EEM37-2... Motor feedback system rotary HIPERFACE DSL® Operating instructions

Type
Operating instructions

Ask a question and I''ll find the answer in the document

Finding information in a document is now easier with AI