Texas Instruments Universal Operational Amplifier EVM (Rev. A) User guide

Type
User guide

Texas Instruments Universal Operational Amplifier EVM (Rev. A) is a comprehensive evaluation tool that empowers you to effortlessly assess the performance of various operational amplifiers.

With its versatile design, this EVM accommodates a wide range of op amp packages, including SOIC, TSSOP/MSOP, SOT23-5A, and SOT23-5B. This flexibility allows you to evaluate different op amps and configurations to determine the optimal solution for your specific application.

The EVM's intuitive layout simplifies circuit development, enabling you to construct various circuits such as voltage followers, non-inverting and inverting amplifiers, summing amplifiers, integrators, differentiators, and instrumentation amplifiers. The board's four separate circuit development areas provide ample space for experimentation and prototyping.

Texas Instruments Universal Operational Amplifier EVM (Rev. A) is a comprehensive evaluation tool that empowers you to effortlessly assess the performance of various operational amplifiers.

With its versatile design, this EVM accommodates a wide range of op amp packages, including SOIC, TSSOP/MSOP, SOT23-5A, and SOT23-5B. This flexibility allows you to evaluate different op amps and configurations to determine the optimal solution for your specific application.

The EVM's intuitive layout simplifies circuit development, enabling you to construct various circuits such as voltage followers, non-inverting and inverting amplifiers, summing amplifiers, integrators, differentiators, and instrumentation amplifiers. The board's four separate circuit development areas provide ample space for experimentation and prototyping.

March 1999 Mixed-Signal Products
Users Guide
SLVU006A
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customers applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1999, Texas Instruments Incorporated
iii
Chapter Title—Attribute Reference
Preface
Related Documentation From Texas Instruments
Amplifiers, Comparators, and Special Functions Data Book
(literature number SLYD011). This data book contains data sheets
and other information on the TI operational amplifiers that can be
used with this evaluation module.
Power Supply Circuits Data Book
(literature number SLVD002).
This data book contains data sheets and other information on the TI
shunt regulators that can be used with this evaluation module.
FCC Warning
This equipment is intended for use in a laboratory test environment only. It
generates, uses, and can radiate radio frequency energy and has not been
tested for compliance with the limits of computing devices pursuant to subpart
J of part 15 of FCC rules, which are designed to provide reasonable protection
against radio frequency interference. Operation of this equipment in other
environments may cause interference with radio communications, in which
case the user at his own expense will be required to take whatever measures
may be required to correct this interference.
Trademarks
TI is a trademark of Texas Instruments Incorporated.
iv
Running Title—Attribute Reference
v
Chapter Title—Attribute Reference
Contents
1 Introduction 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Design Features 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Power Requirements 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Board Layout 2-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Physical Considerations 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Area 100 – SOIC 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Area 200 – TSSOP or MSOP 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Area 300 – SOT23-5A 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5 Area 400 – SOT23-5B 2-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6 Component Placement 2-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7 Board Layout 2-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Example Circuits 3-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Schematic Conventions 3-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Sallen-Key Low-Pass Filter 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Sallen-Key High-Pass Filter 3-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 Inverting Amplifier 3-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5 Noninverting Amplifier 3-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6 Two Operational Amplifier Instrumentation Amplifier 3-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7 Differential Amplifier 3-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Running Title—Attribute Reference
vi
Figures
2–1 Area 100 Schematic – SOIC 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–2 Area 200 Schematic – TSSOP and MSOP 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–3 TLV22X1 Device Pinout 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–4 Area 300 Schematic – SOT23–5A 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–5 TLV2771 and TLV2461 Device Pinout 2-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–6 Area 400 Schematic – SOT23–5B 2-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–7 Universal Operational Amplifier EVM Board Component Placement 2-7. . . . . . . . . . . . . . . . .
2–8 Universal Operational Amplifier EVM Board Layout Top 2-8. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–9 Universal Operational Amplifier EVM Board Layout Bottom 2-9. . . . . . . . . . . . . . . . . . . . . . . . .
3–1 Sallen-Key Low-Pass Filter with Dual Supply Using Area 100 3-2. . . . . . . . . . . . . . . . . . . . . . .
3–2 Sallen-Key High-Pass Filter with Single Supply Using Area 200 3-4. . . . . . . . . . . . . . . . . . . . .
3–3 Inverting Amplifier with Dual Supply Using Area 300 3-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–4 Noninverting Amplifier with Single Supply Using Area 400 3-6. . . . . . . . . . . . . . . . . . . . . . . . . .
3–5 Two Operational Amplifier Instrumentation Amplifier with Single Supply 3-8. . . . . . . . . . . . . .
3–6 Single Operational Amplifier Differential Amplifier with Single Supply 3-9. . . . . . . . . . . . . . . . .
1-1
Introduction
Introduction
This Users Guide describes a universal operational amplifier (op amp)
evaluation module (EVM) that simplifies evaluation of surface-mount op amp.
Topic Page
1.1 Design Features 1–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Power Requirements 1–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter 1
Design Features
1-2
Introduction
1.1 Design Features
The evaluation module board design allows many different circuits to be
constructed easily and quickly. The board has four separate circuit
development areas that can be snapped apart and separated. Areas 100 and
200 are for dual op amps in the SOIC and TSSOP/MSOP packages. Areas 300
and 400 are for SOT23–5 single operational amplifier packages. A few
possible circuits are listed below:
Voltage Follower
Noninverting Amplifier
Inverting Amplifier
Simple or Algebraic Summing Amplifier
Difference Amplifier
Current-to-Voltage Converter
Voltage–to-Current Converter
Integrator/Low-Pass Filter
Differentiator/High-Pass Filter
Instrumentation Amplifier
Sallen-Key Filter
The EVM PCB is of two-layer construction, with a ground plane on the solder
side. Circuit performance should be comparable to final production designs.
1.2 Power Requirements
The devices and designs that are used dictate the input power requirements.
Three input terminals are provided for each area of the board:
Vx+ Positive input power for area x00 i.e., V1+ area 100
GNDx Ground reference for area x00 i.e., GND2 area 200
Vx– Negative input power for area x00 i.e., V4– area 400
Each area has four bypass capacitors, two for the positive supply, and two for
the negative supply. Each supply should have a 1-µF to 10-µF capacitor for low
frequency bypassing and a 0.01-µF to 0.1-µF capacitor for high frequency
bypassing.
When using single supply circuits, the negative supply is shorted to ground by
bridging Cx02 or Cx06, and power input is between Vx+ and GNDx. The
voltage reference circuitry is provided for single supply applications that
require a reference voltage to be generated.
2-1
Evaluation Module Layout
Evaluation Module Layout
This chapter describes and shows the universal op amp EVM board layout and
the relationships between the four areas.
Topic Page
2.1 Physical Consideration 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Area 100 – SOIC 2–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Area 200 – TSSOP or MSOP 2–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Area 300 – SOT23-5A 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5 Area 400 – SOT23-5B 2–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6 Component Placement 2–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7 Board Layout 2–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter 2
Physical Considerations
2-2
Evaluation Module Layout
2.1 Physical Considerations
The EVM board has four circuit development areas. If a specific area is
desired, it can be separated from the others by breaking along the score lines.
The circuit layout in each area supports an op amp package, voltage
reference, and ancillary devices. The op amp package is unique to each area
as described in the following paragraphs. The voltage reference and
supporting devices are the same for all areas. Surface-mount or through-hole
devices can be used for all capacitors and resistors on the board.
The voltage reference can be either surface mount or through hole. If surface-
mount is desired, the TLV431ACDBV5 or TLV431AIDBV5 adjustable shunt
regulators can be used. If through hole is desired, then the TLV431ACLP,
TLV431AILP, TL431CLP, TL431ACLP, TL431ILP or TL431AILP adjustable
shunt regulators can be used. Refer to Texas Instruments’
Power Supply
Circuits Data Book
(literature number SLVD002) for details on usage of these
shunt regulators.
Each passive component, resistor and capacitor, has a surface-mount 1206
foot print with through holes at 0.2 spacing on the outside of the 1206 pads.
Therefore, either surface-mount or through-hole parts can be used.
Area 100 – SOIC
2-3
Evaluation Module Layout
2.2 Area 100 – SOIC
Area 100 uses 1xx reference designators, and is compatible with dual op amps
in 8-pin SOIC packages. Most dual op amps are available in this package. This
surface-mount package is designated by a D suffix in TI part numbers as in
TLV2422CD, TLV2342ID, TLV2252ID, etc. Refer to Figure 2–1 for a
schematic.
Figure 2–1.Area 100 Schematic – SOIC
C104 C103
C109 C110
V1+
V1–
V1+
GND1
V1–
Power Supply Bypass
+
8
1
4
3
2
V1+
V1–
R105
C112
R118
C105
R106
R107
R119
R108
R109
R117
C111
C106
A1OUT
1/2 Dual OP Amp
A101–
A102–
A103+
A104+
+
7
5
6
R104
C107
R112
C102
R103
R102
R111
R101
R110
R113
C108
C101
B1OUT
1/2 Dual OP Amp
B101–
B102–
B103+
B104+
R115
C
R
A
U102
R116
Voltage Reference
V1+
VREF1
U101a
U101b
R114
Area 200 – TSSOP or MSOP
2-4
Evaluation Module Layout
2.3 Area 200 – TSSOP or MSOP
Area 200 uses 2xx reference designators, and is compatible with dual op amps
in an 8-pin TSSOP or MSOP package. The TSSOP package is designated by
a PW suffix in TI part numbers as in TLV2422CPWLE, TLV2342IPWLE,
TLV2252AIPWLE, etc. The MSOP package is designated by a DGK suffix in
TI part numbers as in TLV2462CDGK. Refer to Figure 2–2 for a schematic.
Figure 2–2.Area 200 Schematic – TSSOP and MSOP
C204 C203
C209 C210
V2+
V2–
V2+
GND2
V1–
Power Supply Bypass
+
8
1
4
3
2
V2+
V2–
R205
C212
R218
C205
R206
R207
R219
R208
R209
R217
C211
C206
A2OUT
1/2 Dual OP Amp
A201–
A202–
A203+
A204+
+
R204
C207
R212
C202
R203
R202
R211
R201
R210
R213
C208
C201
B2OUT
1/2 Dual OP Amp
B201–
B202–
B203+
B204+
R215
C
R
A
U202
R216
Voltage Reference
U201a
U201b
V2+
VREF2
R214
7
5
6
Area 300 – SOT23-5A
2-5
Evaluation Module Layout
2.4 Area 300 – SOT23-5A
Area 300 uses 3xx reference designators, and is compatible with single op
amps in the 5-pin SOT-23 package with the pinout used for the TLV22X1 as
shown in Figure 2–3. This surface-mount package is designated by a DBV
suffix in TI part numbers as in TLV2211CDBV, TLV2221CDBV,
TLV2361CDBV, TLV2231IDBV, etc. Note: other parts like TLV2771CDBV,
TLV2711CDBV, TLV2461CDBV, etc., follow different pin-out schemes, which
are not compatible with this layout. See Figure 2–4 for a schematic.
Figure 2–3.TLV22X1 Device Pinout
3
2
4
5
1
IN+
V
DD
–/GND
IN–
V
DD+
OUT
Figure 2–4.Area 300 Schematic – SOT23-5A
C304 C303
C309 C310
V3+
V3–
V3+
GND3
V3–
Power Supply Bypass
+
5
4
2
1
3
V3+
V3–
R305
C312
R318
C305
R306
R307
R319
R308
R309
R317
C311
C306
3OUT
301–
302–
303+
304+
R315
C
R
A
U302
R316
Voltage Reference
U301
V3+
VREF3
R314
Area 400 – SOT23-5B
2-6
Evaluation Module Layout
2.5 Area 400 – SOT23-5B
Area 400 uses 4xx reference designators, and is compatible with single op
amps in the 5-pin SOT-23 package with the pinout used for the TLV2271CDBV
and TLV2461CDBV as shown in Figure 2–5. This surface-mount package is
designated by a DBV suffix in TI part numbers as in TLV2771CDBV and
TLV2461CDBV. Note: earlier parts like TLV2221CDBV, TLV2231IDBV,
TLV2361CDB, and TLV2711CDBV, etc., follow a different pin-out scheme,
which is not compatible with this layout. Refer to Figure 2–6 for a schematic.
Figure 2–5.TLV2771 and TLV2461 Device Pinout
3
2
4
5
1
OUT
V
DD
–/GND
IN+
V
DD+
IN–
Figure 2–6.Area 400 Schematic – SOT23-5B
C404 C403
C409 C410
V4+
V4–
V4+
GND4
V4–
Power Supply Bypass
+
5
1
2
3
4
V4+
V4–
R405
C412
R418
C405
R406
R407
R419
R408
R409
R417
C411
C406
4OUT
401–
402–
403+
404+
R415
C
R
A
U402
R416
Voltage Reference
U401
V4+
VREF4
R414
Component Placement
2-7
Evaluation Module Layout
2.6 Component Placement
Figure 2–7 shows component placement for the EVM board.
Figure 2–7.Universal Operational Amplifier EVM Board Component Placement
R101
C101
R102
R103
R104
C102
C103
C104
U101
C105
R105
R106
R107
C106
R108
R109
B104+
B103+
B102–
B101–
B1OUT
V1+
VREF1
GND1
V1–
A1OUT
A101–
A102–
A103+
A104+
R110
R111
C107
R112
R113
C108
R114
C109
C110
C111
R117
R118
C112
R119
R115
R116
U102
R317
C311
R309
R308
R319
C303
C306
C310
C305
R305
R307
C312
R306
R318
C304
C309
U301
UNIVERSAL OP AMP EVM
R219
C212
R218
R217
C211
C210
C209
R214
C208
R213
R212
C207
R211
R210
R216
R215
U202
R209
R208
C206
R207
R206
R205
C205
C204
U201
C203
C202
R204
R203
R202
C201
R201
A204+
A203+
A202–
A201–
A2OUT
V2–
VREF2
GND2
V2+
B2OUT
B201–
B202–
B203+
B204+
UNIVERSAL OP AMP EVM
TSSOP/MSOP SLOP120-2 1998
R417
C411
R409
R408
R419
C406
C410
C403
C405
R405
R407
R418
C412
R406
C409
C404
U401
R416
R415
U402
R414
VREF4
404+
403+
V4–
4OUT
V4+
GND4
402–
401–
R316
R315
U302
R314
VREF3
304+
303+
V3+
GND3
V3–
3OUT
302–
301–
Score Line
Score Line
Area 100 – SOIC Area 200 – TSSOP/MSOP
Area 300 – SOT23-5A Area 400 – SOT23-5B
SOIC SLOP120-1 1998
UNIVERSAL OP AMP EVM UNIVERSAL OP AMP EVM
SOT23-5B SLOP120-4 1998SOT23-5A SLOP120-3 1998
Board Layout
2-8
Evaluation Module Layout
2.7 Board Layout
Figures 2–8 and 2–9 show the EVM top and bottom board layouts,
respectively.
Figure 2–8.Universal Operational Amplifier EVM Board Layout Top
Board Layout
2-9
Evaluation Module Layout
Figure 2–9.Universal Operational Amplifier EVM Board Layout Bottom
2-10
Evaluation Module Layout
3-1
Example Circuits
Example Circuits
This chapter shows and discusses several example circuits that can be
constructed using the universal operational amplifier EVM. The circuits are all
classic designs that can be found in most operational amplifier design books.
Topic Page
3.1 Schematic Conventions 3–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Sallen-Key Low-Pass Filter 3–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Sallen-Key High-Pass Filter 3–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 Inverting Amplifier 3–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5 Noninverting Amplifier 3–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6 Two Operational Amplifier Instrumentation Amplifiers 3–7. . . . . . . . . . .
3.7 Differential Amplifier 3–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Schematic Conventions
Figures 3–1 through 3–6 show schematics for a sampling of circuits that can
be constructed on the Universal Operational Amplifier EVM. The components
that are placed on the board are shown in bold and unused components are
blanked out. Jumpers and other changes are noted. These examples are only
a few of the many circuits that can be built on the EVM.
Chapter 3
Sallen-Key Low-Pass Filter
3-2
Example Circuits
3.2 Sallen-Key Low-Pass Filter
Figure 3–1 shows area 100 equipped with a dual operational amplifier
configured as a second-order Sallen-Key low-pass filter using dual-power
supplies.
Basic set up is done by proper choice of resistors R and mR, and capacitors
C and nC. The transfer function is:
V
OUT
V
IN
1
1–
ff
o
2
jQff
o
Where:
f
o
1
2 mn
RC
And
Q
mn
m 1
Figure 3–1.Sallen-Key Low-Pass Filter with Dual Supply Using Area 100
C104 C103
C109 C110
V1+
V1–
V1+
GND1
V1–
Power Supply Bypass
+
8
1
4
3
2
V1+
V1–
R105
C112
R118
C105
R106
R107
R119
R108
R109
R117
C111
C106
A1OUT
1/2 Dual OP Amp
A101–
A102–
A103+
A104+
+
7
5
6
R104
C107
R112 C102
R103
R102
R111
R101
R110
R113
C108
C101
B1OUT
1/2 Dual OP Amp
B101–
B102–
B103+
B104+
R114
C
R
A
U102
R115
Voltage Reference
V1+
VREF1
U101a
U101b
R101
Jumper
+
mR R
nC
Jumper
Jumper
Not Used
Not Used
V
out
V
in
V
in
=
1
1– (f/fo)
2
+ (j/Q)(f/fo)
fo =
1
2π mn RC
Q =
mn
m+1
0.1µF1µF
0.1µF1µF
  • Page 1 1
  • Page 2 2
  • Page 3 3
  • Page 4 4
  • Page 5 5
  • Page 6 6
  • Page 7 7
  • Page 8 8
  • Page 9 9
  • Page 10 10
  • Page 11 11
  • Page 12 12
  • Page 13 13
  • Page 14 14
  • Page 15 15
  • Page 16 16
  • Page 17 17
  • Page 18 18
  • Page 19 19
  • Page 20 20
  • Page 21 21
  • Page 22 22
  • Page 23 23
  • Page 24 24
  • Page 25 25
  • Page 26 26
  • Page 27 27
  • Page 28 28

Texas Instruments Universal Operational Amplifier EVM (Rev. A) User guide

Type
User guide

Texas Instruments Universal Operational Amplifier EVM (Rev. A) is a comprehensive evaluation tool that empowers you to effortlessly assess the performance of various operational amplifiers.

With its versatile design, this EVM accommodates a wide range of op amp packages, including SOIC, TSSOP/MSOP, SOT23-5A, and SOT23-5B. This flexibility allows you to evaluate different op amps and configurations to determine the optimal solution for your specific application.

The EVM's intuitive layout simplifies circuit development, enabling you to construct various circuits such as voltage followers, non-inverting and inverting amplifiers, summing amplifiers, integrators, differentiators, and instrumentation amplifiers. The board's four separate circuit development areas provide ample space for experimentation and prototyping.

Ask a question and I''ll find the answer in the document

Finding information in a document is now easier with AI