Texas Instruments TI-Nspire Reference guide

Category
Water pumps
Type
Reference guide
Reference Guide
This guidebook applies to TI-Nspire™ software version 3.0. To obtain the
latest version of the documentation, go to education.ti.com/guides.
ii
Important Information
Except as otherwise expressly stated in the License that accompanies a
program, Texas Instruments makes no warranty, either express or
implied, including but not limited to any implied warranties of
merchantability and fitness for a particular purpose, regarding any
programs or book materials and makes such materials available solely on
an "as-is" basis. In no event shall Texas Instruments be liable to anyone
for special, collateral, incidental, or consequential damages in connection
with or arising out of the purchase or use of these materials, and the sole
and exclusive liability of Texas Instruments, regardless of the form of
action, shall not exceed the amount set forth in the license for the
program. Moreover, Texas Instruments shall not be liable for any claim of
any kind whatsoever against the use of these materials by any other
party.
License
Please see the complete license installed in C:\Program Files\TI
Education\TI-Nspire.
© 2006 - 2011 Texas Instruments Incorporated
iii
Contents
Expression templates
Fraction template ........................................1
Exponent template ...................................... 1
Square root template ..................................1
Nth root template ........................................1
e exponent template ................................... 2
Log template ................................................ 2
Piecewise template (2-piece) .......................2
Piecewise template (N-piece) ......................2
System of 2 equations template .................3
System of N equations template .................3
Absolute value template ............................. 3
dd°mm’ss.ss’’ template ................................3
Matrix template (2 x 2) ................................ 3
Matrix template (1 x 2) ................................ 4
Matrix template (2 x 1) ................................ 4
Matrix template (m x n) ..............................4
Sum template (G) .........................................4
Product template (Π) ................................... 4
First derivative template ............................. 5
Second derivative template ........................5
Definite integral template ..........................5
Alphabetical listing
A
abs() ..............................................................6
amortTbl() ....................................................6
and ................................................................6
angle() .......................................................... 7
ANOVA ......................................................... 7
ANOVA2way ................................................8
Ans ................................................................ 9
approx() ......................................................10
4approxFraction() ....................................... 10
approxRational() ........................................ 10
arccos() ........................................................ 10
arccosh() .....................................................10
arccot() ........................................................ 10
arccoth() .....................................................11
arccsc() ........................................................11
arccsch() ...................................................... 11
arcsec() ........................................................11
arcsech() ...................................................... 11
arcsin() ........................................................ 11
arcsinh() ...................................................... 11
arctan() ....................................................... 11
arctanh() .....................................................11
augment() ...................................................11
avgRC() .......................................................12
B
bal() ............................................................. 12
4Base2 .........................................................12
4Base10 ....................................................... 13
4Base16 ....................................................... 14
binomCdf() .................................................14
binomPdf() .................................................14
C
ceiling() ...................................................... 14
centralDiff() ............................................... 15
char() .......................................................... 15
c
2
2way ........................................................ 15
c
2
Cdf() ........................................................ 16
c
2
GOF ......................................................... 16
c
2
Pdf() ........................................................ 16
ClearAZ ....................................................... 16
ClrErr .......................................................... 17
colAugment() ............................................. 17
colDim() ...................................................... 17
colNorm() ................................................... 17
completeSquare() ...................................... 18
conj() .......................................................... 18
constructMat() ........................................... 18
CopyVar ...................................................... 18
corrMat() .................................................... 19
cos() ............................................................ 19
cos/() .......................................................... 20
cosh() .......................................................... 21
cosh/() ........................................................ 21
cot() ............................................................ 21
cot/() .......................................................... 22
coth() .......................................................... 22
coth/() ........................................................ 22
count() ........................................................ 22
countif() ..................................................... 23
cPolyRoots() ............................................... 23
crossP() ....................................................... 23
csc() ............................................................. 24
csc/() ........................................................... 24
csch() ........................................................... 24
csch/() ......................................................... 24
CubicReg .................................................... 25
cumulativeSum() ........................................ 25
Cycle ........................................................... 26
4Cylind ........................................................ 26
D
dbd() ........................................................... 26
4DD ............................................................. 27
4Decimal ..................................................... 27
Define ......................................................... 27
Define LibPriv ............................................ 28
Define LibPub ............................................ 28
deltaList() ................................................... 29
DelVar ........................................................ 29
delVoid() .................................................... 29
det() ............................................................ 29
diag() .......................................................... 30
dim() ........................................................... 30
Disp ............................................................. 30
4DMS ........................................................... 31
dotP() .......................................................... 31
E
e^() ............................................................. 31
eff() ............................................................. 32
iv
eigVc() .........................................................32
eigVl() .........................................................32
Else ..............................................................32
ElseIf ............................................................33
EndFor .........................................................33
EndFunc ......................................................33
EndIf ............................................................33
EndLoop ......................................................33
EndPrgm .....................................................33
EndTry .........................................................33
EndWhile ....................................................33
euler() .........................................................34
Exit ..............................................................34
exp() ............................................................35
expr() ...........................................................35
ExpReg ........................................................35
F
factor() ........................................................36
FCdf() ..........................................................36
Fill ................................................................36
FiveNumSummary ......................................37
floor() ..........................................................37
For ...............................................................38
format() ......................................................38
fPart() ..........................................................38
FPdf() ..........................................................38
freqTable4list() ............................................39
frequency() .................................................39
FTest_2Samp ..............................................39
Func .............................................................40
G
gcd() ............................................................40
geomCdf() ...................................................41
geomPdf() ...................................................41
getDenom() ................................................41
getLangInfo() .............................................41
getLockInfo() ..............................................42
getMode() ...................................................42
getNum() ....................................................43
getType() ....................................................43
getVarInfo() ................................................43
Goto ............................................................44
4Grad ...........................................................44
I
identity() .....................................................45
If ..................................................................45
ifFn() ............................................................46
imag() ..........................................................46
Indirection ..................................................47
inString() .....................................................47
int() .............................................................47
intDiv() ........................................................47
interpolate() ...............................................48
invc
2
() .........................................................48
invF() ...........................................................48
invNorm() ....................................................48
invt() ............................................................48
iPart() ..........................................................49
irr() ..............................................................49
isPrime() ......................................................49
isVoid() ....................................................... 49
L
Lbl ............................................................... 50
lcm() ............................................................ 50
left() ............................................................ 50
libShortcut() ............................................... 51
LinRegBx ..................................................... 51
LinRegMx ................................................... 52
LinRegtIntervals ......................................... 52
LinRegtTest ................................................ 54
linSolve() ..................................................... 55
@List() .......................................................... 55
list4mat() ..................................................... 55
ln() .............................................................. 55
LnReg .......................................................... 56
Local ........................................................... 57
Lock ............................................................ 57
log() ............................................................ 58
Logistic ....................................................... 58
LogisticD ..................................................... 59
Loop ............................................................ 60
LU ................................................................ 60
M
mat4list() ..................................................... 60
max() ........................................................... 61
mean() ........................................................ 61
median() ..................................................... 61
MedMed ..................................................... 62
mid() ........................................................... 62
min() ........................................................... 63
mirr() ........................................................... 63
mod() .......................................................... 64
mRow() ....................................................... 64
mRowAdd() ................................................ 64
MultReg ...................................................... 64
MultRegIntervals ....................................... 65
MultRegTests ............................................. 65
N
nCr() ............................................................ 66
nDerivative() .............................................. 67
newList() ..................................................... 67
newMat() .................................................... 67
nfMax() ....................................................... 67
nfMin() ....................................................... 68
nInt() ........................................................... 68
nom() .......................................................... 68
norm() ......................................................... 68
normCdf() ................................................... 69
normPdf() ................................................... 69
not .............................................................. 69
nPr() ............................................................ 69
npv() ........................................................... 70
nSolve() ....................................................... 70
O
OneVar ....................................................... 71
or ................................................................ 72
ord() ............................................................ 72
P
v
P4Rx() ........................................................... 72
P4Ry() ........................................................... 73
PassErr ......................................................... 73
piecewise() ..................................................73
poissCdf() ....................................................73
poissPdf() ....................................................73
4Polar .......................................................... 74
polyEval() ....................................................74
polyRoots() .................................................74
PowerReg ...................................................75
Prgm ........................................................... 76
prodSeq() ....................................................76
Product (PI) .................................................76
product() .....................................................76
propFrac() ...................................................77
Q
QR ............................................................... 77
QuadReg ..................................................... 78
QuartReg ....................................................78
R
R4Pq() .......................................................... 79
R4Pr() ...........................................................79
4Rad .............................................................80
rand() .......................................................... 80
randBin() .....................................................80
randInt() .....................................................80
randMat() ...................................................80
randNorm() .................................................80
randPoly() ...................................................81
randSamp() .................................................81
RandSeed ....................................................81
real() ...........................................................81
4Rect ............................................................ 81
ref() ............................................................. 82
remain() ...................................................... 83
Request .......................................................83
RequestStr ..................................................84
Return .........................................................84
right() .......................................................... 84
rk23() .......................................................... 85
root() ........................................................... 85
rotate() ....................................................... 85
round() ........................................................86
rowAdd() ....................................................86
rowDim() ....................................................87
rowNorm() ..................................................87
rowSwap() ..................................................87
rref() ............................................................ 87
S
sec() ............................................................. 88
sec/() ........................................................... 88
sech() ........................................................... 88
sech/() .........................................................88
seq() ............................................................ 89
seqGen() .....................................................89
seqn() .......................................................... 90
setMode() ...................................................90
shift() .......................................................... 91
sign() ........................................................... 92
simult() ........................................................92
sin() ............................................................. 93
sin/() ........................................................... 93
sinh() ........................................................... 94
sinh/() ......................................................... 94
SinReg ........................................................ 95
SortA .......................................................... 95
SortD .......................................................... 96
4Sphere ....................................................... 96
sqrt() ........................................................... 96
stat.results .................................................. 97
stat.values .................................................. 98
stDevPop() .................................................. 98
stDevSamp() ............................................... 98
Stop ............................................................ 99
Store ........................................................... 99
string() ........................................................ 99
subMat() ..................................................... 99
Sum (Sigma) ............................................... 99
sum() ........................................................... 99
sumIf() ...................................................... 100
sumSeq() ................................................... 100
system() .................................................... 100
T
T (transpose) ............................................ 100
tan() .......................................................... 101
tan/() ........................................................ 101
tanh() ........................................................ 102
tanh/() ...................................................... 102
tCdf() ........................................................ 103
Text ........................................................... 103
Then ......................................................... 103
tInterval .................................................... 103
tInterval_2Samp ....................................... 104
tPdf() ........................................................ 104
trace() ....................................................... 104
Try ............................................................. 105
tTest .......................................................... 105
tTest_2Samp ............................................. 106
tvmFV() ..................................................... 106
tvmI() ........................................................ 107
tvmN() ...................................................... 107
tvmPmt() .................................................. 107
tvmPV() ..................................................... 107
TwoVar ..................................................... 108
U
unitV() ...................................................... 109
unLock ...................................................... 109
V
varPop() .................................................... 109
varSamp() ................................................. 110
W
warnCodes() ............................................. 110
when() ...................................................... 110
While ........................................................ 111
“With” ...................................................... 111
X
xor ............................................................ 111
vi
Z
zInterval ....................................................112
zInterval_1Prop ........................................112
zInterval_2Prop ........................................113
zInterval_2Samp .......................................113
zTest ..........................................................114
zTest_1Prop ..............................................114
zTest_2Prop ..............................................115
zTest_2Samp .............................................115
Symbols
+ (add) .......................................................116
N(subtract) ................................................116
·(multiply) ...............................................117
à (divide) ...................................................117
^ (power) ..................................................118
x
2
(square) ................................................118
.+ (dot add) ...............................................119
.. (dot subt.) ..............................................119
.
·(dot mult.) .............................................119
. / (dot divide) ...........................................119
.^ (dot power) ..........................................119
L(negate) ...................................................120
% (percent) ...............................................120
= (equal) ....................................................121
ƒ (not equal) .............................................121
< (less than) ..............................................121
{ (less or equal) ........................................122
> (greater than) ........................................122
| (greater or equal) ..................................122
! (factorial) ................................................122
& (append) ................................................122
d() (derivative) ..........................................123
() (integral) ..............................................123
() (square root) .......................................123
Π() (prodSeq) ............................................124
G() (sumSeq) ..............................................124
GInt() .........................................................125
GPrn() ........................................................ 125
# (indirection) .......................................... 126
E (scientific notation) ............................... 126
g (gradian) ............................................... 126
R(radian) .................................................... 126
¡ (degree) ................................................. 127
¡, ', '' (degree/minute/second) ................. 127
± (angle) .................................................. 127
_ (underscore as an empty element) ...... 127
10^() .......................................................... 128
^/(reciprocal) ........................................... 128
| (“with”) .................................................. 128
& (store) ................................................... 129
:= (assign) ................................................. 129
© (comment) ............................................ 129
0b, 0h ........................................................ 130
Empty (void) elements
Calculations involving void
elements ................................................... 131
List arguments containing void
elements ................................................... 131
Shortcuts for entering math
expressions
EOS™ (Equation Operating
System) hierarchy
Error codes and messages
Warning codes and messages
Texas Instruments Support and
Service
TI-Nspire™ Reference Guide 1
TI-Nspire™
Reference Guide
This guide lists the templates, functions, commands, and operators available for evaluating
math expressions.
Expression templates
Expression templates give you an easy way to enter math expressions in standard mathematical
notation. When you insert a template, it appears on the entry line with small blocks at positions
where you can enter elements. A cursor shows which element you can enter.
Use the arrow keys or press
e to move the cursor to each element’s position, and type a value
or expression for the element. Press
· or to evaluate the expression.
Fraction template
/p keys
Note: See also / (divide), page 117.
Example:
Exponent template
l key
Note: Type the first value, press l, and then type the exponent.
To return the cursor to the baseline, press right arrow (¢).
Note: See also ^ (power), page 118.
Example:
Square root template
/q keys
Note: See also () (square root), page 123.
Example:
Nth root template
/l keys
Note: See also root(), page 85.
Example:
2 TI-Nspire™ Reference Guide
e exponent template
u keys
Natural exponential e raised to a power
Note: See also e^(), page 31.
Example:
Log template
/s key
Calculates log to a specified base. For a default of base 10, omit the
base.
Note: See also log(), page 58.
Example:
Piecewise template (2-piece)
Catalog >
Lets you create expressions and conditions for a two-piece piecewise
function. To add a piece, click in the template and repeat the
template.
Note: See also piecewise(), page 73.
Example:
Piecewise template (N-piece)
Catalog >
Lets you create expressions and conditions for an N-piece piecewise
function. Prompts for N.
Note: See also piecewise(), page 73.
Example:
See the example for Piecewise template (2-piece).
TI-Nspire™ Reference Guide 3
System of 2 equations template
Catalog >
Creates a system of two linear equations. To add a row to an existing
system, click in the template and repeat the template.
Note: See also system(), page 100.
Example:
System of N equations template
Catalog >
Lets you create a system of N linear equations. Prompts for N.
Note: See also system(), page 100.
Example:
See the example for System of equations template (2-equation).
Absolute value template
Catalog >
Note: See also abs(), page 6.
Example:
dd°mm’ss.ss’’ template
Catalog >
Lets you enter angles in dd°mmss.ss’’ format, where dd is the
number of decimal degrees, mm is the number of minutes, and ss.ss
is the number of seconds.
Example:
Matrix template (2 x 2)
Catalog >
Creates a 2 x 2 matrix.
Example:
4 TI-Nspire™ Reference Guide
Matrix template (1 x 2)
Catalog >
.
Example:
Matrix template (2 x 1)
Catalog >
Example:
Matrix template (m x n)
Catalog >
The template appears after you are prompted to specify the number
of rows and columns.
Note: If you create a matrix with a large number of rows and
columns, it may take a few moments to appear.
Example:
Sum template (G)
Catalog >
Note: See also G() (sumSeq), page 124.
Example:
Product template (Π)
Catalog >
Note: See also Π() (prodSeq), page 124.
Example:
TI-Nspire™ Reference Guide 5
First derivative template
Catalog >
The first derivative template can be used to calculate first derivative
at a point numerically, using auto differentiation methods.
Note: See also d() (derivative), page 123.
Example:
Second derivative template
Catalog >
The second derivative template can be used to calculate second
derivative at a point numerically, using auto differentiation methods.
Note: See also d() (derivative), page 123.
Example:
Definite integral template
Catalog >
The definite integral template can be used to calculate the definite
integral numerically, using the same method as nInt().
183Note: See also nInt(), page 68.
Example:
6 TI-Nspire™ Reference Guide
Alphabetical listing
Items whose names are not alphabetic (such as +, !, and >) are listed at the end of this section,
starting on page
116. Unless otherwise specified, all examples in this section were performed in
the default reset mode, and all variables are assumed to be undefined.
A
abs()
Catalog
>
abs(Va lu e 1) value
abs(
List1) list
abs(Matrix1) matrix
Returns the absolute value of the argument.
Note: See also Absolute value template, page 3.
If the argument is a complex number, returns the number’s modulus.
amortTbl()
Catalog
>
amortTbl(NPmt,N,I,PV, [Pmt], [FV], [PpY], [CpY], [PmtAt],
[
roundValue]) matrix
Amortization function that returns a matrix as an amortization table
for a set of TVM arguments.
NPmt is the number of payments to be included in the table. The
table starts with the first payment.
N, I, PV, Pmt, FV, PpY, CpY, and PmtAt are described in the table
of TVM arguments, page 107.
If you omit Pmt, it defaults to
Pmt=tvmPmt(N,I,PV,FV,PpY,CpY,PmtAt).
If you omit FV, it defaults to FV=0.
The defaults for PpY, CpY, and PmtAt are the same as for the
TVM functions.
roundValue specifies the number of decimal places for rounding.
Default=2.
The columns in the result matrix are in this order: Payment number,
amount paid to interest, amount paid to principal, and balance.
The balance displayed in row n is the balance after payment n.
You can use the output matrix as input for the other amortization
functions GInt() and GPrn(), page 125, and bal(), page 12.
and
Catalog
>
BooleanExpr1 and BooleanExpr2 Boolean expression
BooleanList1 and BooleanList2 Boolean list
BooleanMatrix1 and BooleanMatrix2 Boolean matrix
Returns true or false or a simplified form of the original entry.
TI-Nspire™ Reference Guide 7
Integer1 and Integer2 integer
Compares two real integers bit-by-bit using an and operation.
Internally, both integers are converted to signed, 64-bit binary
numbers. When corresponding bits are compared, the result is 1 if
both bits are 1; otherwise, the result is 0. The returned value
represents the bit results, and is displayed according to the Base
mode.
You can enter the integers in any number base. For a binary or
hexadecimal entry, you must use the 0b or 0h prefix, respectively.
Without a prefix, integers are treated as decimal (base 10).
In Hex base mode:
Important: Zero, not the letter O.
In Bin base mode:
In Dec base mode:
Note: A binary entry can have up to 64 digits (not counting the
0b prefix). A hexadecimal entry can have up to 16 digits.
angle()
Catalog
>
angle(Va lu e 1) value
Returns the angle of the argument, interpreting the argument as a
complex number.
In Degree angle mode:
In Gradian angle mode:
In Radian angle mode:
angle(List1) list
angle(Matrix1) matrix
Returns a list or matrix of angles of the elements in List1 or Matrix1,
interpreting each element as a complex number that represents a
two-dimensional rectangular coordinate point.
ANOVA
Catalog
>
ANOVA List1,List2[,List3,...,List20][,Flag]
Performs a one-way analysis of variance for comparing the means of
two to 20 populations. A summary of results is stored in the
stat.results variable. (See page 97.)
Flag=0 for Data, Flag=1 for Stats
Output variable Description
stat.F Value of the F statistic
stat.PVal Smallest level of significance at which the null hypothesis can be rejected
stat.df Degrees of freedom of the groups
stat.SS Sum of squares of the groups
stat.MS Mean squares for the groups
stat.dfError Degrees of freedom of the errors
and
Catalog
>
8 TI-Nspire™ Reference Guide
Outputs: Block Design
COLUMN FACTOR Outputs
stat.SSError Sum of squares of the errors
stat.MSError Mean square for the errors
stat.sp Pooled standard deviation
stat.xbarlist Mean of the input of the lists
stat.CLowerList 95% confidence intervals for the mean of each input list
stat.CUpperList 95% confidence intervals for the mean of each input list
ANOVA2way
Catalog
>
ANOVA2way List1,List2[,List3,,List10][,levRow]
Computes a two-way analysis of variance for comparing the means of
two to 10 populations. A summary of results is stored in the
stat.results variable. (See page 97.)
LevRow=0 for Block
LevRow=2,3,...,Len-1, for Two Factor, where
Len=length(List1)=length(List2) = … = length(List10) and
Len / LevRow {2,3,…}
Output variable Description
stat.FF statistic of the column factor
stat.PVal Smallest level of significance at which the null hypothesis can be rejected
stat.df Degrees of freedom of the column factor
stat.SS Sum of squares of the column factor
stat.MS Mean squares for column factor
stat.FBlock F statistic for factor
stat.PValBlock Least probability at which the null hypothesis can be rejected
stat.dfBlock Degrees of freedom for factor
stat.SSBlock Sum of squares for factor
stat.MSBlock Mean squares for factor
stat.dfError Degrees of freedom of the errors
stat.SSError Sum of squares of the errors
stat.MSError Mean squares for the errors
stat.s Standard deviation of the error
Output variable Description
stat.Fcol F statistic of the column factor
Output variable Description
TI-Nspire™ Reference Guide 9
ROW FACTOR Outputs
INTERACTION Outputs
ERROR Outputs
stat.PValCol Probability value of the column factor
stat.dfCol Degrees of freedom of the column factor
stat.SSCol Sum of squares of the column factor
stat.MSCol Mean squares for column factor
Output variable Description
stat.FRow F statistic of the row factor
stat.PValRow Probability value of the row factor
stat.dfRow Degrees of freedom of the row factor
stat.SSRow Sum of squares of the row factor
stat.MSRow Mean squares for row factor
Output variable Description
stat.FInteract F statistic of the interaction
stat.PValInteract Probability value of the interaction
stat.dfInteract Degrees of freedom of the interaction
stat.SSInteract Sum of squares of the interaction
stat.MSInteract Mean squares for interaction
Output variable Description
stat.dfError Degrees of freedom of the errors
stat.SSError Sum of squares of the errors
stat.MSError Mean squares for the errors
s Standard deviation of the error
Ans
/v
keys
Ans value
Returns the result of the most recently evaluated expression.
Output variable Description
10 TI-Nspire™ Reference Guide
approx()
Catalog
>
approx(Va lu e 1) number
Returns the evaluation of the argument as an expression containing
decimal values, when possible, regardless of the current Auto or
Approximate
mode.
This is equivalent to entering the argument and pressing
/
·
.
approx(List1) list
approx(Matrix1) matrix
Returns a list or matrix where each element has been evaluated to a
decimal value, when possible.
4approxFraction()
Catalog
>
Va lu e
4
approxFraction([Tol]) value
List
4
approxFraction([Tol]) list
Matrix
4
approxFraction([Tol]) matrix
Returns the input as a fraction, using a tolerance of To l. If Tol is
omitted, a tolerance of 5.E-14 is used.
Note: You can insert this function from the computer keyboard by
typing @>approxFraction(...).
approxRational()
Catalog
>
approxRational(Val ue [, Tol]) value
approxRational(List[, Tol]) list
approxRational(Matrix[, Tol]) matrix
Returns the argument as a fraction using a tolerance of Tol . If Tol is
omitted, a tolerance of 5.E-14 is used.
arccos()
See cos
/
(), page
20
.
arccosh()
See cosh
/
(), page
21
.
arccot()
See cot
/
(), page
22
.
TI-Nspire™ Reference Guide 11
arccoth()
See coth
/
(), page
22
.
arccsc()
See csc
/
(), page
24
.
arccsch()
See csch
/
(), page
24
.
arcsec()
See sec
/
(), page
88
.
arcsech()
See sech
/
(), page
88
.
arcsin()
See sin
/
(), page
93
.
arcsinh()
See sinh
/
(), page
94
.
arctan()
See tan
/
(), page
101
.
arctanh()
See tanh
/
(), page
102
.
augment()
Catalog
>
augment(List1, List2) list
Returns a new list that is List2 appended to the end of List1.
augment(Matrix1, Matrix2) matrix
Returns a new matrix that is Matrix2 appended to Matrix1. When
the “,” character is used, the matrices must have equal row
dimensions, and Matrix2 is appended to Matrix1 as new columns.
Does not alter Matrix1 or Matrix2.
12 TI-Nspire™ Reference Guide
B
avgRC()
Catalog
>
avgRC(Expr1, Va r [=Value] [, Step]) expression
avgRC(Expr1, Va r [=Value] [, List1]) list
avgRC(List1, Va r [=Value] [, Step]) list
avgRC(Matrix1, Va r [=Value] [, Step]) matrix
Returns the forward-difference quotient (average rate of change).
Expr1 can be a user-defined function name (see Func).
When Val u e is specified, it overrides any prior variable assignment or
any current “with” substitution for the variable.
Step is the step value. If Step is omitted, it defaults to 0.001.
Note that the similar function centralDiff() uses the central-
difference quotient.
bal()
Catalog
>
bal(NPmt,N,I,PV ,[Pmt], [FV], [PpY], [CpY], [PmtAt],
[
roundValue]) value
bal(NPmt,amortTable) value
Amortization function that calculates schedule balance after a
specified payment.
N, I, PV, Pmt, FV, PpY, CpY, and PmtAt are described in the table
of TVM arguments, page 107.
NPmt specifies the payment number after which you want the data
calculated.
N, I, PV, Pmt, FV, PpY, CpY, and PmtAt are described in the table
of TVM arguments, page 107.
If you omit Pmt, it defaults to
Pmt=tvmPmt(N,I,PV,FV,PpY,CpY,PmtAt).
If you omit FV, it defaults to FV=0.
The defaults for PpY, CpY, and PmtAt are the same as for the
TVM functions.
roundValue specifies the number of decimal places for rounding.
Default=2.
bal(NPmt,amortTable) calculates the balance after payment number
NPmt, based on amortization table amortTable. The amortTable
argument must be a matrix in the form described under amortTbl(),
page 6.
Note: See also GInt() and GPrn(), page 125.
4
Base2
Catalog
>
Integer1 4Base2 integer
Note: You can insert this operator from the computer keyboard by
typing @>Base2.
Converts Integer1 to a binary number. Binary or hexadecimal
numbers always have a 0b or 0h prefix, respectively.
TI-Nspire™ Reference Guide 13
Without a prefix, Integer1 is treated as decimal (base 10). The result
is displayed in binary, regardless of the Base mode.
Negative numbers are displayed in “two's complement” form. For
example,
N1 is displayed as
0hFFFFFFFFFFFFFFFF in Hex base mode
0b111...111 (64 1’s) in Binary base mode
N2
63
is displayed as
0h8000000000000000 in Hex base mode
0b100...000 (63 zeros) in Binary base mode
If you enter a decimal integer that is outside the range of a signed,
64-bit binary form, a symmetric modulo operation is used to bring the
value into the appropriate range. Consider the following examples of
values outside the range.
2
63
becomes N2
63
and is displayed as
0h8000000000000000 in Hex base mode
0b100...000 (63 zeros) in Binary base mode
2
64
becomes 0 and is displayed as
0h0 in Hex base mode
0b0 in Binary base mode
N2
63
N 1 becomes 2
63
N 1 and is displayed as
0h7FFFFFFFFFFFFFFF in Hex base mode
0b111...111 (64 1’s) in Binary base mode
4Base10
Catalog
>
Integer1 4Base10 integer
Note: You can insert this operator from the computer keyboard by
typing @>Base10.
Converts Integer1 to a decimal (base 10) number. A binary or
hexadecimal entry must always have a 0b or 0h prefix, respectively.
0b binaryNumber
0h hexadecimalNumber
Zero, not the letter O, followed by b or h.
A binary number can have up to 64 digits. A hexadecimal number can
have up to 16.
Without a prefix, Integer1 is treated as decimal. The result is
displayed in decimal, regardless of the Base mode.
4
Base2
Catalog
>
Zero, not the letter O, followed by b or h.
A binary number can have up to 64 digits. A
hexadecimal number can have up to 16.
0b binaryNumber
0h hexadecimalNumber
14 TI-Nspire™ Reference Guide
C
4Base16
Catalog
>
Integer1
4Base16 integer
Note: You can insert this operator from the computer keyboard by
typing @>Base16.
Converts Integer1 to a hexadecimal number. Binary or hexadecimal
numbers always have a 0b or 0h prefix, respectively.
0b binaryNumber
0h hexadecimalNumber
Zero, not the letter O, followed by b or h.
A binary number can have up to 64 digits. A hexadecimal number can
have up to 16.
Without a prefix, Integer1 is treated as decimal (base 10). The result
is displayed in hexadecimal, regardless of the Base mode.
If you enter a decimal integer that is too large for a signed, 64-bit
binary form, a symmetric modulo operation is used to bring the value
into the appropriate range. For more information, see
4Base2,
page 12.
binomCdf()
Catalog
>
binomCdf(n,p) number
binomCdf(n,p,lowBound,upBound) number if lowBound
and
upBound are numbers, list if lowBound and upBound are
lists
binomCdf(
n,p,upBound) for P(0{X{upBound) number if
upBound is a number, list if upBound is a list
Computes a cumulative probability for the discrete binomial
distribution with n number of trials and probability p of success on
each trial.
For P(X { upBound), set lowBound=0
binomPdf()
Catalog
>
binomPdf(n,p) number
binomPdf(n,p,XVal) number if XVal is a number, list if
XVal is a list
Computes a probability for the discrete binomial distribution with n
number of trials and probability p of success on each trial.
ceiling()
Catalog
>
ceiling(Val ue 1) value
Returns the nearest integer that is | the argument.
The argument can be a real or a complex number.
Note: See also floor().
ceiling(List1) list
ceiling(Matrix1) matrix
Returns a list or matrix of the ceiling of each element.
  • Page 1 1
  • Page 2 2
  • Page 3 3
  • Page 4 4
  • Page 5 5
  • Page 6 6
  • Page 7 7
  • Page 8 8
  • Page 9 9
  • Page 10 10
  • Page 11 11
  • Page 12 12
  • Page 13 13
  • Page 14 14
  • Page 15 15
  • Page 16 16
  • Page 17 17
  • Page 18 18
  • Page 19 19
  • Page 20 20
  • Page 21 21
  • Page 22 22
  • Page 23 23
  • Page 24 24
  • Page 25 25
  • Page 26 26
  • Page 27 27
  • Page 28 28
  • Page 29 29
  • Page 30 30
  • Page 31 31
  • Page 32 32
  • Page 33 33
  • Page 34 34
  • Page 35 35
  • Page 36 36
  • Page 37 37
  • Page 38 38
  • Page 39 39
  • Page 40 40
  • Page 41 41
  • Page 42 42
  • Page 43 43
  • Page 44 44
  • Page 45 45
  • Page 46 46
  • Page 47 47
  • Page 48 48
  • Page 49 49
  • Page 50 50
  • Page 51 51
  • Page 52 52
  • Page 53 53
  • Page 54 54
  • Page 55 55
  • Page 56 56
  • Page 57 57
  • Page 58 58
  • Page 59 59
  • Page 60 60
  • Page 61 61
  • Page 62 62
  • Page 63 63
  • Page 64 64
  • Page 65 65
  • Page 66 66
  • Page 67 67
  • Page 68 68
  • Page 69 69
  • Page 70 70
  • Page 71 71
  • Page 72 72
  • Page 73 73
  • Page 74 74
  • Page 75 75
  • Page 76 76
  • Page 77 77
  • Page 78 78
  • Page 79 79
  • Page 80 80
  • Page 81 81
  • Page 82 82
  • Page 83 83
  • Page 84 84
  • Page 85 85
  • Page 86 86
  • Page 87 87
  • Page 88 88
  • Page 89 89
  • Page 90 90
  • Page 91 91
  • Page 92 92
  • Page 93 93
  • Page 94 94
  • Page 95 95
  • Page 96 96
  • Page 97 97
  • Page 98 98
  • Page 99 99
  • Page 100 100
  • Page 101 101
  • Page 102 102
  • Page 103 103
  • Page 104 104
  • Page 105 105
  • Page 106 106
  • Page 107 107
  • Page 108 108
  • Page 109 109
  • Page 110 110
  • Page 111 111
  • Page 112 112
  • Page 113 113
  • Page 114 114
  • Page 115 115
  • Page 116 116
  • Page 117 117
  • Page 118 118
  • Page 119 119
  • Page 120 120
  • Page 121 121
  • Page 122 122
  • Page 123 123
  • Page 124 124
  • Page 125 125
  • Page 126 126
  • Page 127 127
  • Page 128 128
  • Page 129 129
  • Page 130 130
  • Page 131 131
  • Page 132 132
  • Page 133 133
  • Page 134 134
  • Page 135 135
  • Page 136 136
  • Page 137 137
  • Page 138 138
  • Page 139 139
  • Page 140 140
  • Page 141 141
  • Page 142 142
  • Page 143 143
  • Page 144 144
  • Page 145 145
  • Page 146 146
  • Page 147 147
  • Page 148 148
  • Page 149 149
  • Page 150 150
  • Page 151 151
  • Page 152 152
  • Page 153 153
  • Page 154 154
  • Page 155 155
  • Page 156 156
  • Page 157 157
  • Page 158 158
  • Page 159 159
  • Page 160 160
  • Page 161 161
  • Page 162 162
  • Page 163 163
  • Page 164 164

Texas Instruments TI-Nspire Reference guide

Category
Water pumps
Type
Reference guide

Ask a question and I''ll find the answer in the document

Finding information in a document is now easier with AI