NXP MPC560xB Reference guide

Type
Reference guide
Freescale Semiconductor
MPC5602DRM
Rev 4.2, 12/2013
© Freescale Semiconductor, Inc., 2012-2013. All rights reserved.
MPC5602D Microcontroller
Reference Manual
This is the MPC5602D Reference Manual set, consisting of the following files:
MPC5602D Reference Manual Addendum (MPC5602DRMAD), Rev. 2
MPC5602D Reference Manual (MPC5602DRM), Rev. 4.1
Freescale Semiconductor
Reference Manual Addendum
MPC5602DRMAD
Rev. 2, 12/2013
Table of Contents
© Freescale Semiconductor, Inc., 2012-2013. All rights reserved.
This addendum document describes corrections to the
MPC5602D Microcontroller Reference Manual, order
number MPC5602DRM. For convenience, the addenda
items are grouped by revision. Please check our website
at http://www.freescale.com/powerarchitecture for the
latest updates.
The current version available of the MPC5602D
Microcontroller Reference Manual is Revision 4.1.
MPC5602D Reference Manual
Addendum
1 Addendum List for Revision 4.1 . . . . . . . . . . . . . . 2
2 Addendum List for Revision 4. . . . . . . . . . . . . . . . 3
3 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . 11
Addendum List for Revision 4.1
MPC5602D Reference Manual Addendum, Rev. 2
Freescale Semiconductor2
1 Addendum List for Revision 4.1
Table 1. MPC5602D RM Rev 4.1 Addenda
Location Description
Chapter 27, “Flash Memory”
page 725
Below Table 27-4, “CFlash TestFlash Structure”.
NOTE
Unique Device ID – Memory location. This device now includes a 128-bit Unique
Identification number (UID) which is programmed during device fabrication.
Start – Stop Address Size (Bytes) Content:
0x00403C10 0x00403C17 8 UID 1
0x00403C18 0x00403C1F 8 UID 2
Addendum List for Revision 4
MPC5602D Reference Manual Addendum, Rev. 2
Freescale Semiconductor 3
2 Addendum List for Revision 4
Table 2. MPC5602DRM Rev 4 Addenda
Location Description
Chapter 6, Clock Description,
page 97
Add Note: to Section 6.8.4.1, Crystal clock monitor:
Note: Functional FXOSC monitoring can only be guaranteed when the FXOSC frequency is
greater than (FIRC / 2
RCDIV
)+0.5MHz.
Add Note: to Section 6.8.4.2, FMPLL clock monitor:
Note: Functional FMPLL monitoring can only be guaranteed when the FMPLL frequency is
greater than (FIRC / 4) + 0.5 MHz.
Chapter 8, Mode Entry
Module (MC_ME), page
125
In Table 8-3 (MC_ME memory map), change DFLAON and CFLAON bits in ME_DRUN_MC and
ME_RUN0…3_MC rows from read-only to read/write.
Chapter 8, Mode Entry
Module (MC_ME), page
125
In Figure 8-12 (DRUN Mode Configuration Register (ME_DRUN_MC)), change DFLAON and
CFLAON bits from read-only to read/write.
In Figure 8-13 (RUN0…3 Mode Configuration Registers (ME_RUN0…3_MC)), change DFLAON
and CFLAON bits from read-only to read/write.
Chapter 9, Reset Generation
Module (MC_RGM), page
191
Replace Section 9.4.7, Boot Mode Capturing, with the following:
The MC_RGM samples PA[9:8] whenever RESET is asserted until five FIRC (16 MHz internal
RC oscillator) clock cycles before its deassertion edge. The result of the sampling is used at
the beginning of reset PHASE3 for boot mode selection and is retained after RESET has been
deasserted for subsequent boots after reset sequences during which RESET is not asserted.
Note: In order to ensure that the boot mode is correctly captured, the application needs to
apply the valid boot mode value the entire time that RESET is asserted.
RESET can be asserted as a consequence of the internal reset generation. This will force
re-sampling of the boot mode pins. (See Table 9- 11 for details.)
Chapter 13, Real Time Clock /
Autonomous Periodic
Interrupt (RTC/API), page
226
In Table 13-3 (RTCC field descriptions), update the Note in RTCC[APIVAL] field description:
Note: API functionality starts only when APIVAL is nonzero. The first API interrupt takes two
more cycles because of synchronization of APIVAL to the RTC clock, and APIVAL + 1 cycles
for subsequent occurrences. After that, interrupts are periodic in nature. Because of
synchronization issues, the minimum supported value of APIVAL is 4.
Chapter 15, Enhanced Direct
Memory Access (eDMA),
page 280
Replace Section 15.5.8, Dynamic programming, with the following:
15.5.8 Dynamic programming
15.5.8.1
Dynamic channel linking
Dynamic channel linking is the process of setting the TCD.major.e_link bit
during channel execution. This bit is read from the TCD local memory at the
end of channel execution, thus allowing the user to enable the feature during
channel execution.
Addendum List for Revision 4
MPC5602D Reference Manual Addendum, Rev. 2
Freescale Semiconductor4
Chapter 15, Enhanced Direct
Memory Access (eDMA),
page 280 (cont.)
Because the user is allowed to change the configuration during execution, a
coherency model is needed. Consider the scenario where the user attempts to
execute a dynamic channel link by enabling the TCD.major.e_link bit at the
same time the eDMA engine is retiring the channel. The TCD.major.e_link
would be set in the programmers model, but it would be unclear whether the
actual link was made before the channel retired.
The coherency model in Table 15-24 is recommended when executing a
dynamic channel link request.
For this request, the TCD local memory controller forces the TCD.major.e_link
bit to zero on any writes to a channel’s TCD.word7 after that channel’s
TCD.done bit is set, indicating the major loop is complete.
NOTE
The user must clear the TCD.done bit before
writing the TCD.major.e_link bit. The TCD.done
bit is cleared automatically by the eDMA engine
after a channel begins execution.
15.5.8.2 Dynamic scatter/gather
Dynamic scatter/gather is the process of setting the TCD.e_sg bit during
channel execution. This bit is read from the TCD local memory at the end of
channel execution, thus allowing the user to enable the feature during channel
execution.
Because the user is allowed to change the configuration during execution, a
coherency model is needed. Consider the scenario where the user attempts to
execute a dynamic scatter/gather operation by enabling the TCD.e_sg bit at the
same time the eDMA engine is retiring the channel. The TCD.e_sg would be
set in the programmers model, but it would be unclear whether the actual
scatter/gather request was honored before the channel retired.
Table 2. MPC5602DRM Rev 4 Addenda (continued)
Location Description
Table 15-24. Coherency model for a dynamic channel link request
Step Action
1 Write 1b to the TCD.major.e_link bit.
2 Read back the TCD.major.e_link bit.
3 Test the TCD.major.e_link request status:
If TCD.major.e_link = 1b, the dynamic link attempt was successful.
If TCD.major.e_link = 0b, the attempted dynamic link did not succeed (the channel
was already retiring).
Addendum List for Revision 4
MPC5602D Reference Manual Addendum, Rev. 2
Freescale Semiconductor 5
Chapter 15, Enhanced Direct
Memory Access (eDMA),
page 280 (cont.)
Two methods for this coherency model are shown in the following subsections.
Method 1 has the advantage of reading the major.linkch field and the e_sg bit
with a single read. For both dynamic channel linking and scatter/gather
requests, the TCD local memory controller forces the TCD.major.e_link and
TCD.e_sg bits to zero on any writes to a channel’s TCD.word7 if that channel’s
TCD.done bit is set indicating the major loop is complete.
NOTE
The user must clear the TCD.done bit before
writing the TCD.major.e_link or TCD.e_sg bits.
The TCD.done bit is cleared automatically by the
eDMA engine after a channel begins execution.
15.5.8.2.1 Method 1 (channel not using major loop channel
linking)
For a channel not using major loop channel linking, the coherency model in
Table 16-25 may be used for a dynamic scatter/gather request.
When the TCD.major.e_link bit is zero, the TCD.major.linkch field is not used
by the eDMA. In this case, the TCD.major.linkch bits may be used for other
purposes. This method uses the TCD.major.linkch field as a TCD identification
(ID).
Table 2. MPC5602DRM Rev 4 Addenda (continued)
Location Description
Table 15-25. Coherency model for method 1
Step Action
1 When the descriptors are built, write a unique TCD ID in the TCD.major.linkch field for
each TCD associated with a channel using dynamic scatter/gather.
2 Write 1b to theTCD.d_req bit.
Note: Should a dynamic scatter/gather attempt fail, setting the d_req bit will prevent a
future hardware activation of this channel. This stops the channel from executing
with a destination address (daddr) that was calculated using a scatter/gather
address (written in the next step) instead of a dlast final offset value.
3 Write theTCD.dlast_sga field with the scatter/gather address.
4 Write 1b to the TCD.e_sg bit.
5 Read back the 16 bit TCD control/status field.
6 Test the TCD.e_sg request status and TCD.major.linkch value:
If e_sg = 1b, the dynamic link attempt was successful.
If e_sg = 0b and the major.linkch (ID) did not change, the attempted dynamic link did
not succeed (the channel was already retiring).
If e_sg = 0b and the major.linkch (ID) changed, the dynamic link attempt was
successful (the new TCD’s e_sg value cleared the e_sg bit).
Addendum List for Revision 4
MPC5602D Reference Manual Addendum, Rev. 2
Freescale Semiconductor6
Chapter 15, Enhanced Direct
Memory Access (eDMA),
page 280 (cont.)
15.5.8.2.2 Method 2 (channel using major loop linking)
For a channel using major loop channel linking, the coherency model in
Table 15-26 may be used for a dynamic scatter/gather request. This method
uses the TCD.dlast_sga field as a TCD identification (ID).
For a channel using major loop channel linking, the coherency model in
Table 15-26 may be used for a dynamic scatter/gather request. This method
uses the TCD.dlast_sga field as a TCD identification (ID).
Chapter 15, Enhanced Direct
Memory Access (eDMA),
page 280 (cont.)
Table 2. MPC5602DRM Rev 4 Addenda (continued)
Location Description
Table 15-26.Coherency model for method 2
Step Action
1 Write 1b to theTCD.d_req bit.
Note: Should a dynamic scatter/gather attempt fail, setting the d_req bit will prevent a
future hardware activation of this channel. This stops the channel from executing
with a destination address (daddr) that was calculated using a scatter/gather
address (written in the next step) instead of a dlast final offset value.
2 Write theTCD.dlast_sga field with the scatter/gather address.
3 Write 1b to the TCD.e_sg bit.
4 Read back the TCD.e_sg bit.
5 Test the TCD.e_sg request status:
If e_sg = 1b, the dynamic link attempt was successful.
If e_sg = 0b, read the 32 bit TCD dlast_sga field.
If e_sg = 0b and the dlast_sga did not change, the attempted dynamic link did not
succeed (the channel was already retiring).
If e_sg = 0b and the dlast_sga changed, the dynamic link attempt was successful
(the new TCD’s e_sg value cleared the e_sg bit).
Addendum List for Revision 4
MPC5602D Reference Manual Addendum, Rev. 2
Freescale Semiconductor 7
Chapter 18, Crossbar Switch
(XBAR), page 325
Replace Figure 18-1 (XBAR block diagram), with the following:
Replace Table 18-1 (XBAR switch ports for MPC5602D), with the following:
Chapter 18, Crossbar Switch
(XBAR), throughout
chapter
Correct “two master ports” to “three master ports” as necessary.
Chapter 18, Crossbar Switch
(XBAR), page 326
In Section 18.4, Features, add a bullet item for eDMA.
Chapter 18, Crossbar Switch
(XBAR), page 328
Replace Table 18-2 (Hardwired bus master priorities) with the following.
Table 2. MPC5602DRM Rev 4 Addenda (continued)
Location Description
CPU
Crossbar Switch
Flash
Master modules
Slave modules
CPU data
Internal
Peripheral
bridges
instructions
memory
SRAM
eDMA
Table 18-1. XBAR switch ports for MPC5602D
Module
Port
Physical master ID
Type Logical number
e200z0 core–CPU instructions Master 0 0
e200z0 core–CPU data / Nexus Master 0 1
eDMA Master 2 2
Flash memory Slave
Internal SRAM Slave
Peripheral bridges Slave
Table 18-2. Hardwired bus master priorities
Module
Port
Priority level
Type Master #
e200z0 core–CPU instructions Master 0 7
e200z0 core–CPU data Master 1 6
eDMA Master 2 5
Addendum List for Revision 4
MPC5602D Reference Manual Addendum, Rev. 2
Freescale Semiconductor8
Chapter 20, LINFlex, p. 394 Insert the following after Section 20.8.2.1.6, Error handling:
20.8.2.1.7 Overrun
Once the message buffer is full, the next valid message reception leads to an
overrun and a message is lost. The hardware sets the BOF bit in the LINSR to
signal the overrun condition. Which message is lost depends on the
configuration of the RX message buffer:
If the buffer lock function is disabled (LINCR1[RBLM] = 0) the last
message stored in the buffer is overwritten by the new incoming
message. In this case the latest message is always available to the
application.
If the buffer lock function is enabled (LINCR1[RBLM] = 0) the most
recent message is discarded and the previous message is available in the
buffer.
Chapter 21, LINFlexD, p. 414 Insert the following after Section 21.7.1.5, Error handling and detection:
21.7.1.6 Overrun
Once the message buffer is full, the next valid message reception leads to an
overrun and a message is lost. The hardware sets the BOF bit in the LINSR to
signal the overrun condition. Which message is lost depends on the
configuration of the RX message buffer:
If the buffer lock function is disabled (LINCR1[RBLM] = 0) the last
message stored in the buffer is overwritten by the new incoming
message. In this case the latest message is always available to the
application.
If the buffer lock function is enabled (LINCR1[RBLM] = 0) the most
recent message is discarded and the previous message is available in
the buffer.
Chapter 22, FlexCAN,
throughout chapter
Remove references throughout the chapter to “low-cost MCUs.
Chapter 22, FlexCAN, page
491
Remove Note: at end of Section 22.2.2, FlexCAN module features:
Note: The individual Rx Mask per Message Buffer feature may not be available in low cost
MCUs. Please consult the specific MCU documentation to find out if this feature is supported.
Chapter 22, FlexCAN, page
494
Remove Note: above Ta bl e 22 -2:
Note: The individual Rx Mask per Message Buffer feature may not be available in low cost
MCUs. Please consult the specific MCU documentation to find out if this feature is supported.
If not supported, the address range 0x0880-0x097F is considered reserved space,
independent of the value of the BCC bit.
Chapter 22, FlexCAN, page
495
Added this Note in the RTR field description of Table 22-4 (Message Buffer Structure field
description):
Note: Do not configure the last Message Buffer to be the RTR frame.
Table 2. MPC5602DRM Rev 4 Addenda (continued)
Location Description
Addendum List for Revision 4
MPC5602D Reference Manual Addendum, Rev. 2
Freescale Semiconductor 9
Chapter 22, FlexCAN, page
523
Remove Note: at end of Section 25.5.6, Matching process:
Note: The individual Rx Mask per Message Buffer feature may not be available in low cost
MCUs. Please consult the specific MCU documentation to find out if this feature is supported.
If not supported, the RXGMASK, RX14MASK, and RX15MASK registers are available,
regardless of the value of the BCC bit.
Chapter 22, FlexCAN, page
527
In Section 22.5.9.4, Protocol timing, update the Note following Figure 22-15 (CAN Engine
Clocking Scheme) to read: “This clock selection feature may not be available in all MCUs. A
particular MCU may not have a PLL, in which case it would have only the oscillator clock, or
it may use only the PLL clock feeding the FlexCAN module. In these cases, the CLK_SRC bit
in the CTRL Register has no effect on the module operation.
Chapter 22, FlexCAN, page
529
Update the table title of Table 22-21 from “CAN Standard Compliant Bit Time Segment Settings”
to “Bosch CAN 2.0B standard compliant bit time segment settings.
Chapter 22, FlexCAN, page
529
In Section 22.5.9.4, Protocol timing, update the Note following Table 22-21 to read: “Other
combinations of Time Segment 1 and Time Segment 2 can be valid. It is the user’s
responsibility to ensure the bit time settings are in compliance with the CAN standard. For bit
time calculations, use an IPT (Information Processing Time) of 2, which is the value
implemented in the FlexCAN module.
Chapter 25, Analog-to-Digital
Converter (ADC), page 662
In Section 25.3.2, Analog clock generator and conversion timings, remove the paragraph:
The direct clock should basically be used only in low power mode when the device is using
only the 16 MHz fast internal RC oscillator, but the conversion still requires a 16 MHz clock
(an 8 MHz clock is not fast enough). In all other cases, the ADC should use the clock divided
by two internally.
Chapter 25, Analog-to-Digital
Converter (ADC), p. 665
In Section 25.3.4.2, CTU in trigger mode, replace the sentence:
If another CTU conversion is triggered before the end of the conversion, that request is
discarded.
with:
If another CTU conversion is triggered before the end of the conversion, that request is
discarded. However, if the CTU has triggered a conversion that is still ongoing on a channel,
it will buffer a second request for the channel and wait for the end of the first conversion before
requesting another conversion. Thus, two conversion requests close together will both be
serviced.
Chapter 25, Analog-to-Digital
Converter (ADC), page 666
In Section 25.3.5.2, Presampling channel enable signals, in Table 25-5, Presampling voltage
selection based on PREVALx fields, in the 01 row, change the “Presampling voltage” field to:
V1 = V
DD_HV_ADC0
or V
DD_HV_ADC1
.
Chapter 25, Analog-to-Digital
Converter (ADC), page 676
Add Note to Section 25.3.11, Auto-clock-off mode:
Note: The auto-clock-off feature cannot operate when the digital interface runs at the same
rate as the analog interface. This means that when MCR.ADCCLKSEL = 1, the analog clock
will not shut down in IDLE mode.
Table 2. MPC5602DRM Rev 4 Addenda (continued)
Location Description
Addendum List for Revision 4
MPC5602D Reference Manual Addendum, Rev. 2
Freescale Semiconductor10
Chapter 25, Analog-to-Digital
Converter (ADC), page 676
In Section 25.4.2.2, Main Status Register (MSR), replace the ADCSTATUS field description with
the following:
The value of this parameter depends on ADC status:
000 IDLE — The ADC is powered up but idle.
001 Power-down — The ADC is powered down.
010 Wait state — The ADC is waiting for an external multiplexer. This occurs only when the
DSDR register is nonzero.
011 Reserved
100 Sample — The ADC is sampling the analog signal.
101 Reserved
110 Conversion — The ADC is converting the sampled signal.
111 Reserved
Chapter 26, Cross Triggering
Unit (CTU), page 703
At the end of Section 26.4.1, Event Configuration Registers (CTU_EVTCFGRx) (x = 0...31), add
the following Note:
NOTE
The CTU tracks issued conversion requests to the ADC. When the ADC
is being triggered by the CTU and there is a need to shut down the ADC,
the ADC must be allowed to complete conversions before being shut
down. This ensures that the CTU is notified of completion; if the ADC
is shut down while performing a CTU-triggered conversion, the CTU is
not notified and will not be able to trigger further conversions until the
device is reset.
Chapter 30, Software
Watchdog Timer (SWT),
page 827
In Figure 30-1 (SWT Control Register (SWT_CR)), correct the reset value of SWT_CR from
0x4000_011B to 0x800_0011B.
In Section 30.5.2.1, SWT Control Register (SWT_CR), remove the following sentence:
Default value for SWT_CR_RST is 0x4000_011B, corresponding to MAP1 = 1 (only data bus
access allowed), RIA = 1 (reset on invalid SWT access), SLK = 1 (soft lock), CSL = 1 (IRC
clock source for counter), FRZ = 1 (freeze on debug), WEN = 1 (watchdog enable).
In Table 30-2 (SWT_CR field descriptions), update the MAPn field description to:
Master Access Protection for Master n.
Allows specific master to update watchdog. MAP0 = CPU, MAP2=eDMA.
The platform bus master assignments are device-specific.
0 Access for the master is not enabled
1 Access for the master is enabled
Chapter 31,Error Correction
Status Module (ECSM),
page 833
Insert the following in Section 31.2, Overview:
The AIPS is the interface between the Advanced High performance Bus (AHB) interface and
on-chip IPS peripherals. IPS peripherals are modules that contain readable/writable control
and status registers. The AHB master reads and writes these registers through the AIPS. The
AIPS generates module enables, the module address, transfer attributes, byte enables, and
write data. These elements then function as inputs to the IPS peripherals.
IPS — Inter Peripheral Subsytem
AIPS — interface between the Advanced High performance Bus (AHB) interface and on-chip
IPS peripherals
AHB — Advanced High-performance Bus
Table 2. MPC5602DRM Rev 4 Addenda (continued)
Location Description
Revision History
MPC5602D Reference Manual Addendum, Rev. 2
Freescale Semiconductor 11
3 Revision History
Table 3 provides a revision history for this reference manual addendum document.
Table 3. Revision History Table
Rev. Number Substantive Changes Date of Release
2.0 Added a note below “CFlash TestFlash Structure” table. 09/2013
1.0 Initial release. 05/2012
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.
Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.
Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property
of their respective owners.© Freescale Semiconductor, Inc. 2012-2013. All
rights reserved.
MPC5602DRMAD
Rev. 2
12/2013
Freescale Semiconductor
MPC5602DRM
Rev. 4.1, 05/2012
© Freescale Semiconductor, Inc., 2012. All rights reserved.
MPC5602D Microcontroller
Reference Manual
by: Microcontroller Solutions Group
This is the MPC5602D Reference Manual set, consisting of the following files:
MPC5602D Reference Manual Addendum (MPC5602DRMAD), Rev. 1
MPC5602D Reference Manual (MPC5602DRM), Rev. 4
Freescale Semiconductor
Reference Manual Addendum
MPC5602DRMAD
Rev. 1 , 05/2012
Table of Contents
© Freescale Semiconductor, Inc., 2012. All rights reserved.
This addendum document describes corrections to the
MPC5602D Microcontroller Reference Manual, order
number MPC5602DRM. For convenience, the addenda
items are grouped by revision. Please check our website
at http://www.freescale.com/powerarchitecture for the
latest updates.
The current version available of the MPC5602D
Microcontroller Reference Manual is Revision 4.
MPC5602D Reference Manual
Addendum
by: Microcontroller Solutions Group
1 Addendum List for Revision 4. . . . . . . . . . . . . . . . 2
2 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . 10
Addendum List for Revision 4
MPC5602D Reference Manual Errata, Rev. 1
Freescale Semiconductor2
1 Addendum List for Revision 4
Table 1. MPC5602DRM Rev 4 Addenda
Location Description
Chapter 6, Clock Description,
page 97
Add Note: to Section 6.8.4.1, Crystal clock monitor:
Note: Functional FXOSC monitoring can only be guaranteed when the FXOSC frequency is
greater than (FIRC / 2
RCDIV
)+0.5MHz.
Add Note: to Section 6.8.4.2, FMPLL clock monitor:
Note: Functional FMPLL monitoring can only be guaranteed when the FMPLL frequency is
greater than (FIRC / 4) + 0.5 MHz.
Chapter 8, Mode Entry
Module (MC_ME), page
125
In Table 8-3 (MC_ME memory map), change DFLAON and CFLAON bits in ME_DRUN_MC and
ME_RUN0…3_MC rows from read-only to read/write.
Chapter 8, Mode Entry
Module (MC_ME), page
125
In Figure 8-12 (DRUN Mode Configuration Register (ME_DRUN_MC)), change DFLAON and
CFLAON bits from read-only to read/write.
In Figure 8-13 (RUN0…3 Mode Configuration Registers (ME_RUN0…3_MC)), change DFLAON
and CFLAON bits from read-only to read/write.
Chapter 9, Reset Generation
Module (MC_RGM), page
191
Replace Section 9.4.7, Boot Mode Capturing, with the following:
The MC_RGM samples PA[9:8] whenever RESET is asserted until five FIRC (16 MHz internal
RC oscillator) clock cycles before its deassertion edge. The result of the sampling is used at
the beginning of reset PHASE3 for boot mode selection and is retained after RESET has been
deasserted for subsequent boots after reset sequences during which RESET is not asserted.
Note: In order to ensure that the boot mode is correctly captured, the application needs to
apply the valid boot mode value the entire time that RESET is asserted.
RESET can be asserted as a consequence of the internal reset generation. This will force
re-sampling of the boot mode pins. (See Table 9- 11 for details.)
Chapter 13, Real Time Clock /
Autonomous Periodic
Interrupt (RTC/API), page
226
In Table 13-3 (RTCC field descriptions), update the Note in RTCC[APIVAL] field description:
Note: API functionality starts only when APIVAL is nonzero. The first API interrupt takes two
more cycles because of synchronization of APIVAL to the RTC clock, and APIVAL + 1 cycles
for subsequent occurrences. After that, interrupts are periodic in nature. Because of
synchronization issues, the minimum supported value of APIVAL is 4.
Chapter 15, Enhanced Direct
Memory Access (eDMA),
page 280
Replace Section 15.5.8, Dynamic programming, with the following:
15.5.8 Dynamic programming
15.5.8.1
Dynamic channel linking
Dynamic channel linking is the process of setting the TCD.major.e_link bit
during channel execution. This bit is read from the TCD local memory at the
end of channel execution, thus allowing the user to enable the feature during
channel execution.
Addendum List for Revision 4
MPC5602D Reference Manual Errata, Rev. 1
Freescale Semiconductor 3
Chapter 15, Enhanced Direct
Memory Access (eDMA),
page 280 (cont.)
Because the user is allowed to change the configuration during execution, a
coherency model is needed. Consider the scenario where the user attempts to
execute a dynamic channel link by enabling the TCD.major.e_link bit at the
same time the eDMA engine is retiring the channel. The TCD.major.e_link
would be set in the programmers model, but it would be unclear whether the
actual link was made before the channel retired.
The coherency model in Table 15-24 is recommended when executing a
dynamic channel link request.
For this request, the TCD local memory controller forces the TCD.major.e_link
bit to zero on any writes to a channel’s TCD.word7 after that channel’s
TCD.done bit is set, indicating the major loop is complete.
NOTE
The user must clear the TCD.done bit before
writing the TCD.major.e_link bit. The TCD.done
bit is cleared automatically by the eDMA engine
after a channel begins execution.
15.5.8.2 Dynamic scatter/gather
Dynamic scatter/gather is the process of setting the TCD.e_sg bit during
channel execution. This bit is read from the TCD local memory at the end of
channel execution, thus allowing the user to enable the feature during channel
execution.
Because the user is allowed to change the configuration during execution, a
coherency model is needed. Consider the scenario where the user attempts to
execute a dynamic scatter/gather operation by enabling the TCD.e_sg bit at the
same time the eDMA engine is retiring the channel. The TCD.e_sg would be
set in the programmers model, but it would be unclear whether the actual
scatter/gather request was honored before the channel retired.
Table 1. MPC5602DRM Rev 4 Addenda (continued)
Location Description
Table 15-24. Coherency model for a dynamic channel link request
Step Action
1 Write 1b to the TCD.major.e_link bit.
2 Read back the TCD.major.e_link bit.
3 Test the TCD.major.e_link request status:
If TCD.major.e_link = 1b, the dynamic link attempt was successful.
If TCD.major.e_link = 0b, the attempted dynamic link did not succeed (the channel
was already retiring).
Addendum List for Revision 4
MPC5602D Reference Manual Errata, Rev. 1
Freescale Semiconductor4
Chapter 15, Enhanced Direct
Memory Access (eDMA),
page 280 (cont.)
Two methods for this coherency model are shown in the following subsections.
Method 1 has the advantage of reading the major.linkch field and the e_sg bit
with a single read. For both dynamic channel linking and scatter/gather
requests, the TCD local memory controller forces the TCD.major.e_link and
TCD.e_sg bits to zero on any writes to a channel’s TCD.word7 if that channel’s
TCD.done bit is set indicating the major loop is complete.
NOTE
The user must clear the TCD.done bit before
writing the TCD.major.e_link or TCD.e_sg bits.
The TCD.done bit is cleared automatically by the
eDMA engine after a channel begins execution.
15.5.8.2.1 Method 1 (channel not using major loop channel
linking)
For a channel not using major loop channel linking, the coherency model in
Table 16-25 may be used for a dynamic scatter/gather request.
When the TCD.major.e_link bit is zero, the TCD.major.linkch field is not used
by the eDMA. In this case, the TCD.major.linkch bits may be used for other
purposes. This method uses the TCD.major.linkch field as a TCD identification
(ID).
Table 1. MPC5602DRM Rev 4 Addenda (continued)
Location Description
Table 15-25. Coherency model for method 1
Step Action
1 When the descriptors are built, write a unique TCD ID in the TCD.major.linkch field for
each TCD associated with a channel using dynamic scatter/gather.
2 Write 1b to theTCD.d_req bit.
Note: Should a dynamic scatter/gather attempt fail, setting the d_req bit will prevent a
future hardware activation of this channel. This stops the channel from executing
with a destination address (daddr) that was calculated using a scatter/gather
address (written in the next step) instead of a dlast final offset value.
3 Write theTCD.dlast_sga field with the scatter/gather address.
4 Write 1b to the TCD.e_sg bit.
5 Read back the 16 bit TCD control/status field.
6 Test the TCD.e_sg request status and TCD.major.linkch value:
If e_sg = 1b, the dynamic link attempt was successful.
If e_sg = 0b and the major.linkch (ID) did not change, the attempted dynamic link did
not succeed (the channel was already retiring).
If e_sg = 0b and the major.linkch (ID) changed, the dynamic link attempt was
successful (the new TCD’s e_sg value cleared the e_sg bit).
Addendum List for Revision 4
MPC5602D Reference Manual Errata, Rev. 1
Freescale Semiconductor 5
Chapter 15, Enhanced Direct
Memory Access (eDMA),
page 280 (cont.)
15.5.8.2.2 Method 2 (channel using major loop linking)
For a channel using major loop channel linking, the coherency model in
Table 15-26 may be used for a dynamic scatter/gather request. This method
uses the TCD.dlast_sga field as a TCD identification (ID).
For a channel using major loop channel linking, the coherency model in
Table 15-26 may be used for a dynamic scatter/gather request. This method
uses the TCD.dlast_sga field as a TCD identification (ID).
Chapter 15, Enhanced Direct
Memory Access (eDMA),
page 280 (cont.)
Table 1. MPC5602DRM Rev 4 Addenda (continued)
Location Description
Table 15-26.Coherency model for method 2
Step Action
1 Write 1b to theTCD.d_req bit.
Note: Should a dynamic scatter/gather attempt fail, setting the d_req bit will prevent a
future hardware activation of this channel. This stops the channel from executing
with a destination address (daddr) that was calculated using a scatter/gather
address (written in the next step) instead of a dlast final offset value.
2 Write theTCD.dlast_sga field with the scatter/gather address.
3 Write 1b to the TCD.e_sg bit.
4 Read back the TCD.e_sg bit.
5 Test the TCD.e_sg request status:
If e_sg = 1b, the dynamic link attempt was successful.
If e_sg = 0b, read the 32 bit TCD dlast_sga field.
If e_sg = 0b and the dlast_sga did not change, the attempted dynamic link did not
succeed (the channel was already retiring).
If e_sg = 0b and the dlast_sga changed, the dynamic link attempt was successful
(the new TCD’s e_sg value cleared the e_sg bit).
Addendum List for Revision 4
MPC5602D Reference Manual Errata, Rev. 1
Freescale Semiconductor6
Chapter 18, Crossbar Switch
(XBAR), page 325
Replace Figure 18-1 (XBAR block diagram), with the following:
Replace Table 18-1 (XBAR switch ports for MPC5602D), with the following:
Chapter 18, Crossbar Switch
(XBAR), throughout
chapter
Correct “two master ports” to “three master ports” as necessary.
Chapter 18, Crossbar Switch
(XBAR), page 326
In Section 18.4, Features, add a bullet item for eDMA.
Chapter 18, Crossbar Switch
(XBAR), page 328
Replace Table 18-2 (Hardwired bus master priorities) with the following.
Table 1. MPC5602DRM Rev 4 Addenda (continued)
Location Description
CPU
Crossbar Switch
Flash
Master modules
Slave modules
CPU data
Internal
Peripheral
bridges
instructions
memory
SRAM
eDMA
Table 18-1. XBAR switch ports for MPC5602D
Module
Port
Physical master ID
Type Logical number
e200z0 core–CPU instructions Master 0 0
e200z0 core–CPU data / Nexus Master 0 1
eDMA Master 2 2
Flash memory Slave
Internal SRAM Slave
Peripheral bridges Slave
Table 18-2. Hardwired bus master priorities
Module
Port
Priority level
Type Master #
e200z0 core–CPU instructions Master 0 7
e200z0 core–CPU data Master 1 6
eDMA Master 2 5
  • Page 1 1
  • Page 2 2
  • Page 3 3
  • Page 4 4
  • Page 5 5
  • Page 6 6
  • Page 7 7
  • Page 8 8
  • Page 9 9
  • Page 10 10
  • Page 11 11
  • Page 12 12
  • Page 13 13
  • Page 14 14
  • Page 15 15
  • Page 16 16
  • Page 17 17
  • Page 18 18
  • Page 19 19
  • Page 20 20
  • Page 21 21
  • Page 22 22
  • Page 23 23
  • Page 24 24
  • Page 25 25
  • Page 26 26
  • Page 27 27
  • Page 28 28
  • Page 29 29
  • Page 30 30
  • Page 31 31
  • Page 32 32
  • Page 33 33
  • Page 34 34
  • Page 35 35
  • Page 36 36
  • Page 37 37
  • Page 38 38
  • Page 39 39
  • Page 40 40
  • Page 41 41
  • Page 42 42
  • Page 43 43
  • Page 44 44
  • Page 45 45
  • Page 46 46
  • Page 47 47
  • Page 48 48
  • Page 49 49
  • Page 50 50
  • Page 51 51
  • Page 52 52
  • Page 53 53
  • Page 54 54
  • Page 55 55
  • Page 56 56
  • Page 57 57
  • Page 58 58
  • Page 59 59
  • Page 60 60
  • Page 61 61
  • Page 62 62
  • Page 63 63
  • Page 64 64
  • Page 65 65
  • Page 66 66
  • Page 67 67
  • Page 68 68
  • Page 69 69
  • Page 70 70
  • Page 71 71
  • Page 72 72
  • Page 73 73
  • Page 74 74
  • Page 75 75
  • Page 76 76
  • Page 77 77
  • Page 78 78
  • Page 79 79
  • Page 80 80
  • Page 81 81
  • Page 82 82
  • Page 83 83
  • Page 84 84
  • Page 85 85
  • Page 86 86
  • Page 87 87
  • Page 88 88
  • Page 89 89
  • Page 90 90
  • Page 91 91
  • Page 92 92
  • Page 93 93
  • Page 94 94
  • Page 95 95
  • Page 96 96
  • Page 97 97
  • Page 98 98
  • Page 99 99
  • Page 100 100
  • Page 101 101
  • Page 102 102
  • Page 103 103
  • Page 104 104
  • Page 105 105
  • Page 106 106
  • Page 107 107
  • Page 108 108
  • Page 109 109
  • Page 110 110
  • Page 111 111
  • Page 112 112
  • Page 113 113
  • Page 114 114
  • Page 115 115
  • Page 116 116
  • Page 117 117
  • Page 118 118
  • Page 119 119
  • Page 120 120
  • Page 121 121
  • Page 122 122
  • Page 123 123
  • Page 124 124
  • Page 125 125
  • Page 126 126
  • Page 127 127
  • Page 128 128
  • Page 129 129
  • Page 130 130
  • Page 131 131
  • Page 132 132
  • Page 133 133
  • Page 134 134
  • Page 135 135
  • Page 136 136
  • Page 137 137
  • Page 138 138
  • Page 139 139
  • Page 140 140
  • Page 141 141
  • Page 142 142
  • Page 143 143
  • Page 144 144
  • Page 145 145
  • Page 146 146
  • Page 147 147
  • Page 148 148
  • Page 149 149
  • Page 150 150
  • Page 151 151
  • Page 152 152
  • Page 153 153
  • Page 154 154
  • Page 155 155
  • Page 156 156
  • Page 157 157
  • Page 158 158
  • Page 159 159
  • Page 160 160
  • Page 161 161
  • Page 162 162
  • Page 163 163
  • Page 164 164
  • Page 165 165
  • Page 166 166
  • Page 167 167
  • Page 168 168
  • Page 169 169
  • Page 170 170
  • Page 171 171
  • Page 172 172
  • Page 173 173
  • Page 174 174
  • Page 175 175
  • Page 176 176
  • Page 177 177
  • Page 178 178
  • Page 179 179
  • Page 180 180
  • Page 181 181
  • Page 182 182
  • Page 183 183
  • Page 184 184
  • Page 185 185
  • Page 186 186
  • Page 187 187
  • Page 188 188
  • Page 189 189
  • Page 190 190
  • Page 191 191
  • Page 192 192
  • Page 193 193
  • Page 194 194
  • Page 195 195
  • Page 196 196
  • Page 197 197
  • Page 198 198
  • Page 199 199
  • Page 200 200
  • Page 201 201
  • Page 202 202
  • Page 203 203
  • Page 204 204
  • Page 205 205
  • Page 206 206
  • Page 207 207
  • Page 208 208
  • Page 209 209
  • Page 210 210
  • Page 211 211
  • Page 212 212
  • Page 213 213
  • Page 214 214
  • Page 215 215
  • Page 216 216
  • Page 217 217
  • Page 218 218
  • Page 219 219
  • Page 220 220
  • Page 221 221
  • Page 222 222
  • Page 223 223
  • Page 224 224
  • Page 225 225
  • Page 226 226
  • Page 227 227
  • Page 228 228
  • Page 229 229
  • Page 230 230
  • Page 231 231
  • Page 232 232
  • Page 233 233
  • Page 234 234
  • Page 235 235
  • Page 236 236
  • Page 237 237
  • Page 238 238
  • Page 239 239
  • Page 240 240
  • Page 241 241
  • Page 242 242
  • Page 243 243
  • Page 244 244
  • Page 245 245
  • Page 246 246
  • Page 247 247
  • Page 248 248
  • Page 249 249
  • Page 250 250
  • Page 251 251
  • Page 252 252
  • Page 253 253
  • Page 254 254
  • Page 255 255
  • Page 256 256
  • Page 257 257
  • Page 258 258
  • Page 259 259
  • Page 260 260
  • Page 261 261
  • Page 262 262
  • Page 263 263
  • Page 264 264
  • Page 265 265
  • Page 266 266
  • Page 267 267
  • Page 268 268
  • Page 269 269
  • Page 270 270
  • Page 271 271
  • Page 272 272
  • Page 273 273
  • Page 274 274
  • Page 275 275
  • Page 276 276
  • Page 277 277
  • Page 278 278
  • Page 279 279
  • Page 280 280
  • Page 281 281
  • Page 282 282
  • Page 283 283
  • Page 284 284
  • Page 285 285
  • Page 286 286
  • Page 287 287
  • Page 288 288
  • Page 289 289
  • Page 290 290
  • Page 291 291
  • Page 292 292
  • Page 293 293
  • Page 294 294
  • Page 295 295
  • Page 296 296
  • Page 297 297
  • Page 298 298
  • Page 299 299
  • Page 300 300
  • Page 301 301
  • Page 302 302
  • Page 303 303
  • Page 304 304
  • Page 305 305
  • Page 306 306
  • Page 307 307
  • Page 308 308
  • Page 309 309
  • Page 310 310
  • Page 311 311
  • Page 312 312
  • Page 313 313
  • Page 314 314
  • Page 315 315
  • Page 316 316
  • Page 317 317
  • Page 318 318
  • Page 319 319
  • Page 320 320
  • Page 321 321
  • Page 322 322
  • Page 323 323
  • Page 324 324
  • Page 325 325
  • Page 326 326
  • Page 327 327
  • Page 328 328
  • Page 329 329
  • Page 330 330
  • Page 331 331
  • Page 332 332
  • Page 333 333
  • Page 334 334
  • Page 335 335
  • Page 336 336
  • Page 337 337
  • Page 338 338
  • Page 339 339
  • Page 340 340
  • Page 341 341
  • Page 342 342
  • Page 343 343
  • Page 344 344
  • Page 345 345
  • Page 346 346
  • Page 347 347
  • Page 348 348
  • Page 349 349
  • Page 350 350
  • Page 351 351
  • Page 352 352
  • Page 353 353
  • Page 354 354
  • Page 355 355
  • Page 356 356
  • Page 357 357
  • Page 358 358
  • Page 359 359
  • Page 360 360
  • Page 361 361
  • Page 362 362
  • Page 363 363
  • Page 364 364
  • Page 365 365
  • Page 366 366
  • Page 367 367
  • Page 368 368
  • Page 369 369
  • Page 370 370
  • Page 371 371
  • Page 372 372
  • Page 373 373
  • Page 374 374
  • Page 375 375
  • Page 376 376
  • Page 377 377
  • Page 378 378
  • Page 379 379
  • Page 380 380
  • Page 381 381
  • Page 382 382
  • Page 383 383
  • Page 384 384
  • Page 385 385
  • Page 386 386
  • Page 387 387
  • Page 388 388
  • Page 389 389
  • Page 390 390
  • Page 391 391
  • Page 392 392
  • Page 393 393
  • Page 394 394
  • Page 395 395
  • Page 396 396
  • Page 397 397
  • Page 398 398
  • Page 399 399
  • Page 400 400
  • Page 401 401
  • Page 402 402
  • Page 403 403
  • Page 404 404
  • Page 405 405
  • Page 406 406
  • Page 407 407
  • Page 408 408
  • Page 409 409
  • Page 410 410
  • Page 411 411
  • Page 412 412
  • Page 413 413
  • Page 414 414
  • Page 415 415
  • Page 416 416
  • Page 417 417
  • Page 418 418
  • Page 419 419
  • Page 420 420
  • Page 421 421
  • Page 422 422
  • Page 423 423
  • Page 424 424
  • Page 425 425
  • Page 426 426
  • Page 427 427
  • Page 428 428
  • Page 429 429
  • Page 430 430
  • Page 431 431
  • Page 432 432
  • Page 433 433
  • Page 434 434
  • Page 435 435
  • Page 436 436
  • Page 437 437
  • Page 438 438
  • Page 439 439
  • Page 440 440
  • Page 441 441
  • Page 442 442
  • Page 443 443
  • Page 444 444
  • Page 445 445
  • Page 446 446
  • Page 447 447
  • Page 448 448
  • Page 449 449
  • Page 450 450
  • Page 451 451
  • Page 452 452
  • Page 453 453
  • Page 454 454
  • Page 455 455
  • Page 456 456
  • Page 457 457
  • Page 458 458
  • Page 459 459
  • Page 460 460
  • Page 461 461
  • Page 462 462
  • Page 463 463
  • Page 464 464
  • Page 465 465
  • Page 466 466
  • Page 467 467
  • Page 468 468
  • Page 469 469
  • Page 470 470
  • Page 471 471
  • Page 472 472
  • Page 473 473
  • Page 474 474
  • Page 475 475
  • Page 476 476
  • Page 477 477
  • Page 478 478
  • Page 479 479
  • Page 480 480
  • Page 481 481
  • Page 482 482
  • Page 483 483
  • Page 484 484
  • Page 485 485
  • Page 486 486
  • Page 487 487
  • Page 488 488
  • Page 489 489
  • Page 490 490
  • Page 491 491
  • Page 492 492
  • Page 493 493
  • Page 494 494
  • Page 495 495
  • Page 496 496
  • Page 497 497
  • Page 498 498
  • Page 499 499
  • Page 500 500
  • Page 501 501
  • Page 502 502
  • Page 503 503
  • Page 504 504
  • Page 505 505
  • Page 506 506
  • Page 507 507
  • Page 508 508
  • Page 509 509
  • Page 510 510
  • Page 511 511
  • Page 512 512
  • Page 513 513
  • Page 514 514
  • Page 515 515
  • Page 516 516
  • Page 517 517
  • Page 518 518
  • Page 519 519
  • Page 520 520
  • Page 521 521
  • Page 522 522
  • Page 523 523
  • Page 524 524
  • Page 525 525
  • Page 526 526
  • Page 527 527
  • Page 528 528
  • Page 529 529
  • Page 530 530
  • Page 531 531
  • Page 532 532
  • Page 533 533
  • Page 534 534
  • Page 535 535
  • Page 536 536
  • Page 537 537
  • Page 538 538
  • Page 539 539
  • Page 540 540
  • Page 541 541
  • Page 542 542
  • Page 543 543
  • Page 544 544
  • Page 545 545
  • Page 546 546
  • Page 547 547
  • Page 548 548
  • Page 549 549
  • Page 550 550
  • Page 551 551
  • Page 552 552
  • Page 553 553
  • Page 554 554
  • Page 555 555
  • Page 556 556
  • Page 557 557
  • Page 558 558
  • Page 559 559
  • Page 560 560
  • Page 561 561
  • Page 562 562
  • Page 563 563
  • Page 564 564
  • Page 565 565
  • Page 566 566
  • Page 567 567
  • Page 568 568
  • Page 569 569
  • Page 570 570
  • Page 571 571
  • Page 572 572
  • Page 573 573
  • Page 574 574
  • Page 575 575
  • Page 576 576
  • Page 577 577
  • Page 578 578
  • Page 579 579
  • Page 580 580
  • Page 581 581
  • Page 582 582
  • Page 583 583
  • Page 584 584
  • Page 585 585
  • Page 586 586
  • Page 587 587
  • Page 588 588
  • Page 589 589
  • Page 590 590
  • Page 591 591
  • Page 592 592
  • Page 593 593
  • Page 594 594
  • Page 595 595
  • Page 596 596
  • Page 597 597
  • Page 598 598
  • Page 599 599
  • Page 600 600
  • Page 601 601
  • Page 602 602
  • Page 603 603
  • Page 604 604
  • Page 605 605
  • Page 606 606
  • Page 607 607
  • Page 608 608
  • Page 609 609
  • Page 610 610
  • Page 611 611
  • Page 612 612
  • Page 613 613
  • Page 614 614
  • Page 615 615
  • Page 616 616
  • Page 617 617
  • Page 618 618
  • Page 619 619
  • Page 620 620
  • Page 621 621
  • Page 622 622
  • Page 623 623
  • Page 624 624
  • Page 625 625
  • Page 626 626
  • Page 627 627
  • Page 628 628
  • Page 629 629
  • Page 630 630
  • Page 631 631
  • Page 632 632
  • Page 633 633
  • Page 634 634
  • Page 635 635
  • Page 636 636
  • Page 637 637
  • Page 638 638
  • Page 639 639
  • Page 640 640
  • Page 641 641
  • Page 642 642
  • Page 643 643
  • Page 644 644
  • Page 645 645
  • Page 646 646
  • Page 647 647
  • Page 648 648
  • Page 649 649
  • Page 650 650
  • Page 651 651
  • Page 652 652
  • Page 653 653
  • Page 654 654
  • Page 655 655
  • Page 656 656
  • Page 657 657
  • Page 658 658
  • Page 659 659
  • Page 660 660
  • Page 661 661
  • Page 662 662
  • Page 663 663
  • Page 664 664
  • Page 665 665
  • Page 666 666
  • Page 667 667
  • Page 668 668
  • Page 669 669
  • Page 670 670
  • Page 671 671
  • Page 672 672
  • Page 673 673
  • Page 674 674
  • Page 675 675
  • Page 676 676
  • Page 677 677
  • Page 678 678
  • Page 679 679
  • Page 680 680
  • Page 681 681
  • Page 682 682
  • Page 683 683
  • Page 684 684
  • Page 685 685
  • Page 686 686
  • Page 687 687
  • Page 688 688
  • Page 689 689
  • Page 690 690
  • Page 691 691
  • Page 692 692
  • Page 693 693
  • Page 694 694
  • Page 695 695
  • Page 696 696
  • Page 697 697
  • Page 698 698
  • Page 699 699
  • Page 700 700
  • Page 701 701
  • Page 702 702
  • Page 703 703
  • Page 704 704
  • Page 705 705
  • Page 706 706
  • Page 707 707
  • Page 708 708
  • Page 709 709
  • Page 710 710
  • Page 711 711
  • Page 712 712
  • Page 713 713
  • Page 714 714
  • Page 715 715
  • Page 716 716
  • Page 717 717
  • Page 718 718
  • Page 719 719
  • Page 720 720
  • Page 721 721
  • Page 722 722
  • Page 723 723
  • Page 724 724
  • Page 725 725
  • Page 726 726
  • Page 727 727
  • Page 728 728
  • Page 729 729
  • Page 730 730
  • Page 731 731
  • Page 732 732
  • Page 733 733
  • Page 734 734
  • Page 735 735
  • Page 736 736
  • Page 737 737
  • Page 738 738
  • Page 739 739
  • Page 740 740
  • Page 741 741
  • Page 742 742
  • Page 743 743
  • Page 744 744
  • Page 745 745
  • Page 746 746
  • Page 747 747
  • Page 748 748
  • Page 749 749
  • Page 750 750
  • Page 751 751
  • Page 752 752
  • Page 753 753
  • Page 754 754
  • Page 755 755
  • Page 756 756
  • Page 757 757
  • Page 758 758
  • Page 759 759
  • Page 760 760
  • Page 761 761
  • Page 762 762
  • Page 763 763
  • Page 764 764
  • Page 765 765
  • Page 766 766
  • Page 767 767
  • Page 768 768
  • Page 769 769
  • Page 770 770
  • Page 771 771
  • Page 772 772
  • Page 773 773
  • Page 774 774
  • Page 775 775
  • Page 776 776
  • Page 777 777
  • Page 778 778
  • Page 779 779
  • Page 780 780
  • Page 781 781
  • Page 782 782
  • Page 783 783
  • Page 784 784
  • Page 785 785
  • Page 786 786
  • Page 787 787
  • Page 788 788
  • Page 789 789
  • Page 790 790
  • Page 791 791
  • Page 792 792
  • Page 793 793
  • Page 794 794
  • Page 795 795
  • Page 796 796
  • Page 797 797
  • Page 798 798
  • Page 799 799
  • Page 800 800
  • Page 801 801
  • Page 802 802
  • Page 803 803
  • Page 804 804
  • Page 805 805
  • Page 806 806
  • Page 807 807
  • Page 808 808
  • Page 809 809
  • Page 810 810
  • Page 811 811
  • Page 812 812
  • Page 813 813
  • Page 814 814
  • Page 815 815
  • Page 816 816
  • Page 817 817
  • Page 818 818
  • Page 819 819
  • Page 820 820
  • Page 821 821
  • Page 822 822
  • Page 823 823
  • Page 824 824
  • Page 825 825
  • Page 826 826
  • Page 827 827
  • Page 828 828
  • Page 829 829
  • Page 830 830
  • Page 831 831
  • Page 832 832
  • Page 833 833
  • Page 834 834
  • Page 835 835
  • Page 836 836
  • Page 837 837
  • Page 838 838
  • Page 839 839
  • Page 840 840
  • Page 841 841
  • Page 842 842
  • Page 843 843
  • Page 844 844
  • Page 845 845
  • Page 846 846
  • Page 847 847
  • Page 848 848
  • Page 849 849
  • Page 850 850
  • Page 851 851
  • Page 852 852
  • Page 853 853
  • Page 854 854
  • Page 855 855
  • Page 856 856
  • Page 857 857
  • Page 858 858
  • Page 859 859
  • Page 860 860
  • Page 861 861
  • Page 862 862
  • Page 863 863
  • Page 864 864
  • Page 865 865
  • Page 866 866
  • Page 867 867
  • Page 868 868
  • Page 869 869
  • Page 870 870
  • Page 871 871
  • Page 872 872
  • Page 873 873
  • Page 874 874
  • Page 875 875
  • Page 876 876
  • Page 877 877
  • Page 878 878
  • Page 879 879
  • Page 880 880
  • Page 881 881
  • Page 882 882
  • Page 883 883
  • Page 884 884
  • Page 885 885
  • Page 886 886
  • Page 887 887
  • Page 888 888
  • Page 889 889
  • Page 890 890
  • Page 891 891
  • Page 892 892
  • Page 893 893
  • Page 894 894
  • Page 895 895
  • Page 896 896
  • Page 897 897
  • Page 898 898
  • Page 899 899
  • Page 900 900
  • Page 901 901
  • Page 902 902
  • Page 903 903
  • Page 904 904

NXP MPC560xB Reference guide

Type
Reference guide

Ask a question and I''ll find the answer in the document

Finding information in a document is now easier with AI