2-2 D1000 USERS MANUAL
undesired signal such as a tare weight. The Trim Zero (TZ) command is used
to adjust the output to any desired value by loading the appropriate value in
the offset register. The offset register data is nonvolatile.
The output offset may also be modified using the Set Point (SP) command.
The data value specified by the SP command is multiplied by -1 before being
loaded into the register. The Set Point command specifies a null value that
is subtracted from the input data. The output reading becomes a deviation
value from the downloaded setpoint. This feature is very useful in on-off
controllers as described in Chapter 6 of this manual.
The value stored in the offset register may be read back using the Read Zero
(RZ) command. Data loaded in with the SP command will be read back with
the sign changed. The output register may be reset to zero with the Clear
Zero (CZ) command.
The output data may be read with the Read Data (RD) command. In some
cases when a computer is used as a host, the same data value may be read
back several times before it is updated with a new A/D conversion. To
guarantee that the same data is not read more than once, the New Data (ND)
command is used. Each time an RD or ND command is performed, the New
Data Flag is cleared. The flag is set each time the output data register is
loaded as the result of a new A/D conversion. The ND command waits until
the flag is set before it outputs the data reading.
The remainder of Figure 2.1 shows several functions: a versatile alarm
function, an event counter and general-purpose digital inputs and outputs.
These functions are described in detail in Chapter 6.
The alarm section consists of two registers that are used to store high and
low alarm limit values. These registers may be down-loaded with data
values by using the HI and LO alarm commands. The alarm values are
loaded with the same data format that is used with the output data. The high
and low alarm registers are nonvolatile so they will not be lost when the unit
is powered down. The values held in the alarm registers may be read back
at any time with the Read High (RH) and Read Low (RL) commands.
The data held in the alarm registers is continually compared with the
calculated output data. The result of the comparison is used to trip alarms
that may be used as control outputs. The high alarm is turned on when the
output data exceeds the high limit value. The low alarm is activated if the
output data is less than the low alarm value. Each alarm has two user
selectable modes, either Momentary (M) or Latching (L). Momentary alarms
are activated only while the alarm condition is met; if the output data returns
within limits, the alarm is turned off. Conversely, when latching alarms are
activated, they remain on even if the output data returns within limits.