9
(continued)
Excess pressure resulting from larger than
necessary volumes of fresh air will cause excessive
dilution of the ue products resulting in low ue
gas temperatures. If lowered below the dew point,
condensation of the moisture in the ue gases
will occur and, if continued over an extended
period of time, will corrode vents, drafthoods, heat
exchangers, and burners.
There are certain elements known as halogens
(uorine, chlorine, bromide, iodine and astatine)
which are utilized in many commercial products
(refrigerants, solvents, spray can propellant, etc.).
If these products must be used near the heating
plant, extra precaution must be taken to obtain
uncontaminated air from the outside, otherwise
severe corrosion will occur in the boiler and vent
system.
When an existing boiler is removed from a
common venting system, the common venting
system is likely to be too large for proper venting
of the appliances remaining connected to it.
1.4 VENTING – As pointed out before, venting is the
process of removing of the ue products. There
are basically two types of venting: atmospheric
(or gravity) and power venting. Further discussion
will be limited to atmospheric vent systems since
it is, by far, the most commonly used and the most
applicable to the Series 8H/8HE modular boilers. The
atmospheric system is composed of numerous parts
and it is necessary to understand the function and
operation of each part in order to properly design the
system.
Do not alter boiler draft hood or place any
obstruction or non-approved damper in the
breeching or vent system. Flue gas spillage can
occur. Unsafe boiler operation will occur.
1.4.1 DRAFTHOOD – The ue outlet of a heating appliance
such as the Series 8H/8HE module cannot be
connected directly to the vent system for the following
reasons:
a) The amount of air drawn thru the combustion
chamber would vary with the height of the vent
pipe. Hence, there would be little or no chance
of maintaining the same air ow rate thru the
appliance for the variety of installation conditions
which invariably are encountered.
b) There would be no way to compensate for variable
wind conditions encountered at the terminal of
the vent. If wind conditions created a negative
pressure at the vent terminal, this negative pressure
would tend to increase the ow thru the vent
system – this phenomena is referred to as updraft.
If the wind created a positive pressure at the
terminal, the ow through the vent system would
be retarded or reversed – this condition is referred
to as downdraft.
c) There would be no avenue of escape for the ue
gases in case the vent became blocked.
d) Flue gases, if undiluted, could reach temperatures
which would create a potential re hazard if the
ue gases were to strike ammable surfaces.
To overcome all of the deciencies outlined above,
an AGA listed vertical to vertical type of drafthood is
furnished with each Series 8H/8HE boiler, see insert
of Fig. 1-5. The inlet opening of the drafthood is
connected to the ue outlet of the boiler, and the exit
or outlet opening of the drafthood is connected to the
riser portion of the vent connector. The inlet and exit
diameter and the stem height of the drafthood are a
function of boiler size since they were determined
only after extensive testing and after certication by
the American Gas Association and by the Canadian
Gas Association. Therefore, THE DRAFTHOOD
MUST NOT BE ALTERED IN ANY MANNER.
1.4.2 VENT CONNECTOR – see Fig. 1-5. The vent
connector is that portion of the vent system which
connects the exit (outlet) of a drafthood of an
individual appliance to the manifold vent (breeching)
servicing two or more boilers. If there is a horizontal
run in the vent connector, this horizontal run is
known as a lateral. Since the vent connector may
enter the bottom or the side of the manifold vent,
the vent connector rise is the vertical distance from
the drafthood outlet to the lowest level at which
the connector enters the manifold. A slip joint or
drawband, as illustrated in Fig. 1-5, will facilitate
installation of connectors as well as replacement
of parts in that portion of the system should it ever
become necessary.
1.4.3 MANIFOLD AND COMMON VENTS – see Figs.
1-5, 1-6. A manifold vent or breeching is a horizontal
extension of the vertical common vent. The common
vent, which is sized to handle the total load when
all modules are operating, can be of masonry
construction, single-wall metal pipe, or type B Gas
Vent Pipe – consult local codes. A UL Listed vent
cap should be installed, if possible, at the exit of the
common vent to assure full vent capacity and freedom
from adverse wind effects.
Total vent height is the vertical distance between
the exit of the common vent and the exit or outlet
of the drafthood. Regardless of the calculated total
vent height required for capacity, all vents must be
correctly terminated a sufcient distance above the
roof surface and away from nearby obstructions,
see Figs. 1-5 and 1.6. This is to avoid adverse