Miller AUTO ARC 255 Owner's manual

Category
Welding System
Type
Owner's manual

This manual is also suitable for

Miller AUTO ARC 255 is a versatile welding machine capable of both Gas Metal Arc (MIG) and Flux Cored Arc (FCAW) welding, making it suitable for a wide range of welding applications. It provides precise control over welding parameters, allowing users to achieve high-quality welds on various materials. Its compact design and user-friendly interface make it suitable for both professional welders and hobbyists. The AUTO ARC 255 is equipped with advanced features such as automatic voltage and wire feed speed adjustment, making it easy to set up and operate.

Miller AUTO ARC 255 is a versatile welding machine capable of both Gas Metal Arc (MIG) and Flux Cored Arc (FCAW) welding, making it suitable for a wide range of welding applications. It provides precise control over welding parameters, allowing users to achieve high-quality welds on various materials. Its compact design and user-friendly interface make it suitable for both professional welders and hobbyists. The AUTO ARC 255 is equipped with advanced features such as automatic voltage and wire feed speed adjustment, making it easy to set up and operate.

Processes
OM-157 066M
August 1998
Auto Arc 255
R
®
Description
Gas Metal Arc (MIG) Welding
Flux Cored Arc (FCAW)
Welding
Arc Welding Power Source And Wire
Feeder
For Technical Support, Contact:
Milweld Inc., National Distributor
P.O. Box 338, Hortonville, WI 54944-0338
Tel 920-779-0916 Fax 920-779-0924
TABLE OF CONTENTS
SECTION 1 SAFETY PRECAUTIONS - READ BEFORE USING 1. . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-1. Symbol Usage 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-2. Arc Welding Hazards 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-3. Additional Symbols for Installation, Operation, and Maintenance 3. . . . . . . . . . . . . . . . . . . . . . .
1-4. Principal Safety Standards 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-5. EMF Information 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SECTION 2 INSTALLATION 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-1. Specifications 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-2. Volt-Ampere Curve 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-3. Duty Cycle And Overheating 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-4. Installing Work Clamp 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-5. Installing Gas Supply 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-6. Installing Welding Gun 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-7. Installing Wire Spool And Adjusting Hub Tension 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-8. Setting Gun Polarity 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-9. Positioning Jumper Links 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-10. Electrical Service Guide 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-11. Selecting A Location And Connecting Input Power 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-12. Threading Welding Wire 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SECTION 3 OPERATION 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-1. Front Panel Controls 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-2. Center Baffle Controls 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SECTION 4 MAINTENANCE & TROUBLESHOOTING 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-1. Routine Maintenance 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-2. Circuit Breaker CB1 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-3. Fuses F1 And F2 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-4. Changing Drive Roll And Wire Inlet Guide 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-5. Aligning Drive Rolls And Wire Guide 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-6. Troubleshooting 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SECTION 5 ELECTRICAL DIAGRAM 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SECTION 6 PARTS LIST 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WARRANTY
OM-157 066-M
OM-157 066 Page 1
SECTION 1 SAFETY PRECAUTIONS - READ BEFORE USING
som _nd_5/97
1-1. Symbol Usage
Means Warning! Watch Out! There are possible hazards
with this procedure! The possible hazards are shown in
the adjoining symbols.
Y Marks a special safety message.
. Means “Note”; not safety related.
This group of symbols means Warning! Watch Out! possible
ELECTRIC SHOCK, MOVING PARTS, and HOT PARTS hazards.
Consult symbols and related instructions below for necessary actions
to avoid the hazards.
1-2. Arc Welding Hazards
Y The symbols shown below are used throughout this manual to
call attention to and identify possible hazards. When you see
the symbol, watch out, and follow the related instructions to
avoid the hazard. The safety information given below is only
a summary of the more complete safety information found in
the Safety Standards listed in Section 1-4. Read and follow all
Safety Standards.
Y Only qualified persons should install, operate, maintain, and
repair this unit.
Y During operation, keep everybody, especially children, away.
ELECTRIC SHOCK can kill.
Touching live electrical parts can cause fatal shocks
or severe burns. The electrode and work circuit is
electrically live whenever the output is on. The input
power circuit and machine internal circuits are also
live when power is on. In semiautomatic or automatic wire welding, the
wire, wire reel, drive roll housing, and all metal parts touching the
welding wire are electrically live. Incorrectly installed or improperly
grounded equipment is a hazard.
D Do not touch live electrical parts.
D Wear dry, hole-free insulating gloves and body protection.
D Insulate yourself from work and ground using dry insulating mats
or covers big enough to prevent any physical contact with the work
or ground.
D Do not use AC output in damp areas, if movement is confined, or if
there is a danger of falling.
D Use AC output ONLY if required for the welding process.
D If AC output is required, use remote output control if present on
unit.
D Disconnect input power or stop engine before installing or
servicing this equipment. Lockout/tagout input power according to
OSHA 29 CFR 1910.147 (see Safety Standards).
D Properly install and ground this equipment according to its
Owner’s Manual and national, state, and local codes.
D Always verify the supply ground check and be sure that input
power cord ground wire is properly connected to ground terminal in
disconnect box or that cord plug is connected to a properly
grounded receptacle outlet.
D When making input connections, attach proper grounding conduc-
tor first double-check connections.
D Frequently inspect input power cord for damage or bare wiring
replace cord immediately if damaged bare wiring can kill.
D Turn off all equipment when not in use.
D Do not use worn, damaged, undersized, or poorly spliced cables.
D Do not drape cables over your body.
D If earth grounding of the workpiece is required, ground it directly
with a separate cable do not use work clamp or work cable.
D Do not touch electrode if you are in contact with the work, ground,
or another electrode from a different machine.
D Use only well-maintained equipment. Repair or replace damaged
parts at once. Maintain unit according to manual.
D Wear a safety harness if working above floor level.
D Keep all panels and covers securely in place.
D Clamp work cable with good metal-to-metal contact to workpiece
or worktable as near the weld as practical.
D Insulate work clamp when not connected to workpiece to prevent
contact with any metal object.
D Do not connect more than one electrode or work cable to any
single weld output terminal.
SIGNIFICANT DC VOLTAGE exists after removal of
input power on inverters.
D Turn Off inverter, disconnect input power, and discharge input
capacitors according to instructions in Maintenance Section
before touching any parts.
Welding produces fumes and gases. Breathing
these fumes and gases can be hazardous to your
health.
FUMES AND GASES can be hazardous.
D Keep your head out of the fumes. Do not breathe the fumes.
D If inside, ventilate the area and/or use exhaust at the arc to remove
welding fumes and gases.
D If ventilation is poor, use an approved air-supplied respirator.
D Read the Material Safety Data Sheets (MSDSs) and the
manufacturers instructions for metals, consumables, coatings,
cleaners, and degreasers.
D Work in a confined space only if it is well ventilated, or while
wearing an air-supplied respirator. Always have a trained watch-
person nearby. Welding fumes and gases can displace air and
lower the oxygen level causing injury or death. Be sure the breath-
ing air is safe.
D Do not weld in locations near degreasing, cleaning, or spraying op-
erations. The heat and rays of the arc can react with vapors to form
highly toxic and irritating gases.
D Do not weld on coated metals, such as galvanized, lead, or
cadmium plated steel, unless the coating is removed from the weld
area, the area is well ventilated, and if necessary, while wearing an
air-supplied respirator. The coatings and any metals containing
these elements can give off toxic fumes if welded.
OM-157 066 Page 2
Arc rays from the welding process produce intense
visible and invisible (ultraviolet and infrared) rays
that can burn eyes and skin. Sparks fly off from the
weld.
ARC RAYS can burn eyes and skin.
D Wear a welding helmet fitted with a proper shade of filter to protect
your face and eyes when welding or watching (see ANSI Z49.1
and Z87.1 listed in Safety Standards).
D Wear approved safety glasses with side shields under your
helmet.
D Use protective screens or barriers to protect others from flash and
glare; warn others not to watch the arc.
D Wear protective clothing made from durable, flame-resistant mate-
rial (leather and wool) and foot protection.
Welding on closed containers, such as tanks,
drums, or pipes, can cause them to blow up. Sparks
can fly off from the welding arc. The flying sparks, hot
workpiece, and hot equipment can cause fires and
burns. Accidental contact of electrode to metal objects can cause
sparks, explosion, overheating, or fire. Check and be sure the area is
safe before doing any welding.
WELDING can cause fire or explosion.
D Protect yourself and others from flying sparks and hot metal.
D Do not weld where flying sparks can strike flammable material.
D Remove all flammables within 35 ft (10.7 m) of the welding arc. If
this is not possible, tightly cover them with approved covers.
D Be alert that welding sparks and hot materials from welding can
easily go through small cracks and openings to adjacent areas.
D Watch for fire, and keep a fire extinguisher nearby.
D Be aware that welding on a ceiling, floor, bulkhead, or partition can
cause fire on the hidden side.
D Do not weld on closed containers such as tanks, drums, or pipes,
unless they are properly prepared according to AWS F4.1 (see
Safety Standards).
D Connect work cable to the work as close to the welding area as
practical to prevent welding current from traveling long, possibly
unknown paths and causing electric shock and fire hazards.
D Do not use welder to thaw frozen pipes.
D Remove stick electrode from holder or cut off welding wire at
contact tip when not in use.
D Wear oil-free protective garments such as leather gloves, heavy
shirt, cuffless trousers, high shoes, and a cap.
D Remove any combustibles, such as a butane lighter or matches,
from your person before doing any welding.
FLYING METAL can injure eyes.
D Welding, chipping, wire brushing, and grinding
cause sparks and flying metal. As welds cool,
they can throw off slag.
D Wear approved safety glasses with side
shields even under your welding helmet.
BUILDUP OF GAS can injure or kill.
D Shut off shielding gas supply when not in use.
D Always ventilate confined spaces or use
approved air-supplied respirator.
HOT PARTS can cause severe burns.
D Do not touch hot parts bare handed.
D Allow cooling period before working on gun or
torch.
MAGNETIC FIELDS can affect pacemakers.
D Pacemaker wearers keep away.
D Wearers should consult their doctor before
going near arc welding, gouging, or spot
welding operations.
NOISE can damage hearing.
Noise from some processes or equipment can
damage hearing.
D Wear approved ear protection if noise level is
high.
Shielding gas cylinders contain gas under high
pressure. If damaged, a cylinder can explode. Since
gas cylinders are normally part of the welding
process, be sure to treat them carefully.
CYLINDERS can explode if damaged.
D Protect compressed gas cylinders from excessive heat, mechani-
cal shocks, slag, open flames, sparks, and arcs.
D Install cylinders in an upright position by securing to a stationary
support or cylinder rack to prevent falling or tipping.
D Keep cylinders away from any welding or other electrical circuits.
D Never drape a welding torch over a gas cylinder.
D Never allow a welding electrode to touch any cylinder.
D Never weld on a pressurized cylinder explosion will result.
D Use only correct shielding gas cylinders, regulators, hoses, and fit-
tings designed for the specific application; maintain them and
associated parts in good condition.
D Turn face away from valve outlet when opening cylinder valve.
D Keep protective cap in place over valve except when cylinder is in
use or connected for use.
D Read and follow instructions on compressed gas cylinders,
associated equipment, and CGA publication P-1 listed in Safety
Standards.
OM-157 066 Page 3
1-3. Additional Symbols For Installation, Operation, And Maintenance
FIRE OR EXPLOSION hazard.
D Do not install or place unit on, over, or near
combustible surfaces.
D Do not install unit near flammables.
D Do not overload building wiring be sure power supply system is
properly sized, rated, and protected to handle this unit.
FALLING UNIT can cause injury.
D Use lifting eye to lift unit only, NOT running
gear, gas cylinders, or any other accessories.
D Use equipment of adequate capacity to lift and
support unit.
D If using lift forks to move unit, be sure forks are
long enough to extend beyond opposite side of
unit.
OVERUSE can cause OVERHEATING
D Allow cooling period; follow rated duty cycle.
D Reduce current or reduce duty cycle before
starting to weld again.
D Do not block or filter airflow to unit.
STATIC (ESD) can damage PC boards.
D Put on grounded wrist strap BEFORE handling
boards or parts.
D Use proper static-proof bags and boxes to
store, move, or ship PC boards.
MOVING PARTS can cause injury.
D Keep away from moving parts.
D Keep away from pinch points such as drive
rolls.
WELDING WIRE can cause injury.
D Do not press gun trigger until instructed to do
so.
D Do not point gun toward any part of the body,
other people, or any metal when threading
welding wire.
MOVING PARTS can cause injury.
D Keep away from moving parts such as fans.
D Keep all doors, panels, covers, and guards
closed and securely in place.
H.F. RADIATION can cause interference.
D High-frequency (H.F.) can interfere with radio
navigation, safety services, computers, and
communications equipment.
D Have only qualified persons familiar with
electronic equipment perform this installation.
D The user is responsible for having a qualified electrician prompt-
ly correct any interference problem resulting from the installa-
tion.
D If notified by the FCC about interference, stop using the
equipment at once.
D Have the installation regularly checked and maintained.
D Keep high-frequency source doors and panels tightly shut, keep
spark gaps at correct setting, and use grounding and shielding to
minimize the possibility of interference.
ARC WELDING can cause interference.
D Electromagnetic energy can interfere with
sensitive electronic equipment such as
computers and computer-driven equipment
such as robots.
D Be sure all equipment in the welding area is
electromagnetically compatible.
D To reduce possible interference, keep weld cables as short as
possible, close together, and down low, such as on the floor.
D Locate welding operation 100 meters from any sensitive elec-
tronic equipment.
D Be sure this welding machine is installed and grounded
according to this manual.
D If interference still occurs, the user must take extra measures
such as moving the welding machine, using shielded cables,
using line filters, or shielding the work area.
1-4. Principal Safety Standards
Safety in Welding and Cutting, ANSI Standard Z49.1, from American
Welding Society, 550 N.W. LeJeune Rd, Miami FL 33126
Safety and Health Standards, OSHA 29 CFR 1910, from Superinten-
dent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.
Recommended Safe Practices for the Preparation for Welding and Cut-
ting of Containers That Have Held Hazardous Substances, American
Welding Society Standard AWS F4.1, from American Welding Society,
550 N.W. LeJeune Rd, Miami, FL 33126
National Electrical Code, NFPA Standard 70, from National Fire Protec-
tion Association, Batterymarch Park, Quincy, MA 02269.
Safe Handling of Compressed Gases in Cylinders, CGA Pamphlet P-1,
from Compressed Gas Association, 1235 Jefferson Davis Highway,
Suite 501, Arlington, VA 22202.
Code for Safety in Welding and Cutting, CSA Standard W117.2, from
Canadian Standards Association, Standards Sales, 178 Rexdale
Boulevard, Rexdale, Ontario, Canada M9W 1R3.
Safe Practices For Occupation And Educational Eye And Face
Protection, ANSI Standard Z87.1, from American National Standards
Institute, 1430 Broadway, New York, NY 10018.
Cutting And Welding Processes, NFPA Standard 51B, from National
Fire Protection Association, Batterymarch Park, Quincy, MA 02269.
OM-157 066 Page 4
1-5. EMF Information
Considerations About Welding And The Effects Of Low Frequency
Electric And Magnetic Fields
Welding current, as it flows through welding cables, will cause electro-
magnetic fields. There has been and still is some concern about such
fields. However, after examining more than 500 studies spanning 17
years of research, a special blue ribbon committee of the National
Research Council concluded that: “The body of evidence, in the
committee’s judgment, has not demonstrated that exposure to power-
frequency electric and magnetic fields is a human-health hazard.”
However, studies are still going forth and evidence continues to be
examined. Until the final conclusions of the research are reached, you
may wish to minimize your exposure to electromagnetic fields when
welding or cutting.
To reduce magnetic fields in the workplace, use the following
procedures:
1. Keep cables close together by twisting or taping them.
2. Arrange cables to one side and away from the operator.
3. Do not coil or drape cables around your body.
4. Keep welding power source and cables as far away from opera-
tor as practical.
5. Connect work clamp to workpiece as close to the weld as possi-
ble.
About Pacemakers:
Pacemaker wearers consult your doctor first. If cleared by your doctor,
then following the above procedures is recommended.
OM-157 066 Page 5
SECTION 2 INSTALLATION
2-1. Specifications
Rated Welding Output
Amperage
Range DC
Maximum
Open-Circuit
Amperes Input at Rated Load
Output, 50 or 60 Hz, Single-Phase
Rated Welding Output
Range DC
Open Circuit
Voltage DC
200 V 230 V KVA KW
200 A @ 28 Volts DC, 60%
Duty Cycle
250 A @ 28 Volts DC, 40%
Duty Cycle
40 250 42
46
1.1*
40
1.3*
9.5
0.31*
8.3
0.18*
Wire Type And Diameter
Solid Steel /
Stainless Steel
Flux Cored /
Aluminum
Wire Feed Speed Range Overall Dimensions Weight
.023 .045 in
(0.6 1.2 mm)
.030 .035 in
(0.8 0.9 mm) And
3/64 in (1.2 mm) Alu
90 1030 IPM (2.9 26.2 m/min)
Length: 37 in (940 mm)
Width: 19 in (483 mm)
Height: 32 in (889 mm)
225 lb
(102 kg)
*While idling
2-2. Volt-Ampere Curve
The volt-ampere curves show the
minimum and maximum voltage
and amperage output capabilities of
the welding power source. Curves
of other settings fall between the
curves shown.
ssb1.1 10/91 SB-049 424-C
OM-157 066 Page 6
6 Minutes Welding 4 Minutes Resting
2-3. Duty Cycle And Overheating
Duty Cycle is percentage of 10 min-
utes that unit can weld at rated load
without overheating.
If unit overheats, thermostat(s)
opens, output stops, and cooling
fan runs. Wait fifteen minutes for
unit to cool. Reduce amperage or
voltage, or duty cycle before
welding.
Y Exceeding duty cycle can
damage unit and void
warranty.
Overheating
0
15
A or V
OR
Reduce Duty Cycle
Minutes
duty1 4/95 SB-150 215
60% Duty Cycle At 200 Amperes
OM-157 066 Page 7
2-4. Installing Work Clamp
1 Work Cable
2 Boot
Slide boot onto work cable. Route
cable out front panel opening from
inside.
3 Negative () Output Terminal
Connect cable to terminal and
cover connection with boot.
4 Hardware
5 Work Clamp
Route cable through clamp handle
and secure as shown.
Close door.
ST-800 918-B
1/2, 3/4 in
1
2
3
4
5
Tools Needed:
2-5. Installing Gas Supply
ST-154 623-A / Ref. ST-109 492
Chain gas cylinder to running gear,
wall, or other stationary support so
cylinder cannot fall and break off
valve.
1 Regulator/Flow Gauge
Install so face is vertical.
2 Gas Hose Connection
Fitting has 5/8-18 right-hand
threads.
3 Flow Adjust
Typical flow rate is 20 cfh (cubic feet
per hour). Check wire manufactur-
er’s recommended flow rate. This
flow gauge can be adjusted be-
tween 5 and 25 cfh.
4CO
2
Adapter
Customer Supplied
5 O-Ring
Install adapter with O-ring between
regulator/flow gauge and CO
2
cylinder.
5/8, 1-1/8 in
Tools Needed:
1
2
CO
2
Gas
4 5
1
Argon Gas
OR
3
OM-157 066 Page 8
2-6. Installing Welding Gun
Ref. ST-801 677
1 Drive Assembly
2 Gun Securing Knob
3 Gun End
Loosen securing knob. Insert gun
end through opening until it bottoms
against drive assembly. Tighten
nut.
4 Gun Trigger Plug
Insert plug into receptacle, and
tighten threaded collar.
Close door.
1
2
3
4
2-7. Installing Wire Spool And Adjusting Hub Tension
ST-072 573-B
When a slight force is needed to turn spool, tension is set.
15/16 in
Use compression spring with
8 in (200 mm) spools.
Tools Needed:
OM-157 066 Page 9
2-8. Setting Gun Polarity
1 Polarity Changeover Label
(Located Near Drive
Assembly)
Always read and follow manufac-
ture’s recommended polarity.
Shown As Shipped Set For Electrode
Positive (DCEP) For Solid Steel Or
Aluminum Wires (GMAW Process).
Wire Drive Assembly Lead
To Positive (+) Output Terminal
Work Clamp Lead To
Negative () Output Terminal
GUN POLARITY
CHANGEOVER CONNECTIONS
Reverse Lead Connections For Electrode
Negative (DCEN) For Flux Cored Wires
(FCAW Process). Drive Assembly
Becomes Negative
S-144 449-D
1
3/4, 11/16 in
Tools Needed:
OM-157 066 Page 10
2-9. Positioning Jumper Links
Ref. ST-800 922-B
Check input voltage available at
site.
1 Jumper Links Access Door
Open door.
2 Jumper Link Label
3 Input Voltage Jumper Link
Move jumper link to match input
voltage.
Close and secure access door.
1
2
200 VOLTS
230 VOLTS
S-153 980
3/8 in
Tools Needed:
3
2-10. Electrical Service Guide
Input Voltage
200 230
Input Amperes At Rated Output
46 40
Max Recommended Standard Fuse Or Circuit Breaker Rating In
Amperes
70 60
Min Input Conductor Size In AWG/Kcmil
8 8
Max Recommended Input Conductor Length In Feet (Meters)
89 (27) 117 (36)
Min Grounding Conductor Size In AWG/Kcmil
8 8
Reference: 1996 National Electrical Code (NEC). S-0092J
OM-157 066 Page 11
2-11. Selecting A Location And Connecting Input Power
1 Rating Label
Supply correct input power.
2 Plug
3 Receptacle (Not Supplied)
Connect plug to receptacle.
4 Line Disconnect Device
See Section 2-10.
Y Special installation may be
required where gasoline or
volatile liquids are present
see NEC Article 511 or CEC
Section 20.
ST-800 923-A
L1L2
230 VAC, 1
18 in (457 mm) of
space for airflow
L1
L2
1
Y Do not move or operate unit
where it could tip.
Y Always connect
grounding conductor first.
= GND/PE
3
2
4
OM-157 066 Page 12
2-12. Threading Welding Wire
1 Wire Spool
2 Welding Wire
3 Inlet Wire Guide
4 Pressure Adjustment Knob
5 Drive Roll
6 Outlet Wire Guide
7 Gun Conduit Cable
Lay gun cable out straight.
4
7
35 621
Ref. ST-801 677 / S-0627-A
6 in
(150 mm)
4 in
(102 mm)
Tighten
WOOD
Open pressure assembly. Pull and hold wire; cut off end. Push wire thru guides into gun;
continue to hold wire.
Close and tighten pressure
assembly, and let go of wire.
Remove gun nozzle and contact tip. Turn On.
Press gun trigger until wire
comes out of gun. Reinstall
contact tip and nozzle.
Feed wire to check drive roll pressure.
Tighten knob enough to prevent slipping.
Cut off wire. Close
and latch door.
Tools Needed:
OM-157 066 Page 13
SECTION 3 OPERATION
3-1. Front Panel Controls
Ref. ST-171 639-C / Ref. ST-174 843-A
Controls For Standard Units
1 Wire Speed Control
The scale around the control is
percent, not wire feed speed.
2 Voltage Switch
Use control and Voltage Range Se-
lector (see Section 3-2) to set arc
voltage. Step 6 of Low range and
Step 1 of High range overlap.
3 Pilot Light
4 Power Switch
1
4
3
2
3-2. Center Baffle Controls
Ref. ST-800 919 / S-171 601
1 Wire Mode Switch
For better control of wire speed use
the Low position when wire speed is
between 90 and 670 ipm. Use the
Full position when wire speed is be-
tween 150 ipm and 1030 ipm.
2 Voltage Range Selector
Place switch in desired position.
1
2
DO NOT SWITCH
UNDER LOAD
CB1
PRESS TO RESET
LOW
FULL
LOW
HIGH
WIRE
MODE
VOLTAGE
RANGE
OM-157 066 Page 14
SECTION 4 MAINTENANCE & TROUBLESHOOTING
4-1. Routine Maintenance
Y Disconnect power
before maintaining.
. Maintain more often
during severe conditions.
3 Months
Replace
Damaged Or
Unreadable
Labels
Clean And
Tighten
Weld
Terminals
Repair Or
Replace
Cracked
Cables And
Cords
6 Months
Blow Out Or
Vacuum Inside
Remove drive roll and
carrier. Apply light coat
of oil or grease to drive
motor shaft.
4-2. Circuit Breaker CB1
Ref. ST-801 677
1 Circuit Breaker CB1
If CB1 opens, wire feeding stops.
2 Welding Gun
Check gun liner for blockage or
kinks.
3 Wire Drive Assembly
Check for jammed wire, binding
drive gear or misaligned drive rolls.
Allow cooling period and reset
breaker. Close door.
1
2
3
OM-157 066 Page 15
4-3. Fuses F1 And F2
Ref. ST-800 928-B
Y Turn Off unit, and disconnect
input power.
1 Fuse F1 (See Parts List For
Rating)
F1 protects the 115 volts ac winding
of transformer T1. If F1 opens, all
weld output stops and pilot light PL1
goes out.
2 Fuse F2 (See Parts List For
Rating)
F2 protects the 24 volts ac winding
of transformer T1. If F2 opens, all
weld output stops.
2
1
3/8 in
Tools Needed:
OM-157 066 Page 16
4-4. Changing Drive Roll And Wire Inlet Guide
ST-150 227-C
1
3
2
4
5
1 Securing Screw
2 Inlet Wire Guide
Loosen screw. Slide tip as close to
drive rolls as possible without touch-
ing. Tighten screw.
3 Anti-Wear Guide
Install guide as shown.
4 Drive Roll
Install correct drive roll for wire size
and type.
5 Drive Roll Securing Nut
Turn nut one click to secure drive
roll.
5/64 in
7/16 in
Tools Needed:
4-5. Aligning Drive Rolls And Wire Guide
Y Turn Off unit.
View is from top of drive rolls look-
ing down with pressure assembly
open.
1 Drive Roll Securing Nut
2 Drive Roll
3 Wire Guide
4 Welding Wire
5 Drive Gear
Insert screwdriver, and turn screw
in or out until drive roll groove lines
up with wire guide.
Close pressure assembly.
Ref. ST-800 412-A
Correct Incorrect
4
3
2
1
5
Tools Needed:
  • Page 1 1
  • Page 2 2
  • Page 3 3
  • Page 4 4
  • Page 5 5
  • Page 6 6
  • Page 7 7
  • Page 8 8
  • Page 9 9
  • Page 10 10
  • Page 11 11
  • Page 12 12
  • Page 13 13
  • Page 14 14
  • Page 15 15
  • Page 16 16
  • Page 17 17
  • Page 18 18
  • Page 19 19
  • Page 20 20
  • Page 21 21
  • Page 22 22
  • Page 23 23
  • Page 24 24
  • Page 25 25
  • Page 26 26
  • Page 27 27
  • Page 28 28

Miller AUTO ARC 255 Owner's manual

Category
Welding System
Type
Owner's manual
This manual is also suitable for

Miller AUTO ARC 255 is a versatile welding machine capable of both Gas Metal Arc (MIG) and Flux Cored Arc (FCAW) welding, making it suitable for a wide range of welding applications. It provides precise control over welding parameters, allowing users to achieve high-quality welds on various materials. Its compact design and user-friendly interface make it suitable for both professional welders and hobbyists. The AUTO ARC 255 is equipped with advanced features such as automatic voltage and wire feed speed adjustment, making it easy to set up and operate.

Ask a question and I''ll find the answer in the document

Finding information in a document is now easier with AI