Miller Electric MC290547U, Auto Axcess 675, AUTO-AXCESS 675 DI Owner's manual

  • Hello! I am an AI chatbot trained to assist you with the Miller Electric MC290547U Owner's manual. I’ve already reviewed the document and can help you find the information you need or explain it in simple terms. Just ask your questions, and providing more details will help me assist you more effectively!
OM-240 146J 201206
Auto-Axcess 675 DI
Processes
Description
MIG (GMAW) Welding
Pulsed MIG (GMAW-P)
Flux Cored (FCAW) Welding
Automatic Welding
Automatic Welding Interface And
Arc Welding Power Source
File: Advanced Manufacturing Systems
Visit our website at
www.MillerWelds.com/ams
Miller Electric manufactures a full line
of welders and welding related equipment.
For information on other quality Miller
products, contact your local Miller distributor to receive the latest full
line catalog or individual specification sheets. To locate your nearest
distributor or service agency call 1-800-4-A-Miller, or visit us at
www.MillerWelds.com on the web.
Thank you and congratulations on choosing Miller. Now you can get
the job done and get it done right. We know you don’t have time to do
it any other way.
That’s why when Niels Miller first started building arc welders in 1929,
he made sure his products offered long-lasting value and superior
quality. Like you, his customers couldn’t afford anything less. Miller
products had to be more than the best they could be. They had to be the
best you could buy.
Today, the people that build and sell Miller products continue the
tradition. They’re just as committed to providing equipment and service
that meets the high standards of quality and value established in 1929.
This Owners Manual is designed to help you get the most out of your
Miller products. Please take time to read the Safety precautions. They
will help you protect yourself against potential hazards on the worksite.
We’ve made installation and operation quick
and easy. With Miller you can count on years
of reliable service with proper maintenance.
And if for some reason the unit needs repair,
there’s a Troubleshooting section that will
help you figure out what the problem is. The
parts list will then help you to decide the
exact part you may need to fix the problem.
Warranty and service information for your
particular model are also provided.
Miller is the first welding
equipment manufacturer in
the U.S.A. to be registered to
the ISO 9001:2000 Quality
System Standard.
Working as hard as you do
every power source from
Miller is backed by the most
hassle-free warranty in the
business.
From Miller to You
Mil_Thank 200909
TABLE OF CONTENTS
SECTION 1 SAFETY PRECAUTIONS - READ BEFORE USING 1.................................
1-1. Symbol Usage 1.......................................................................
1-2. Arc Welding Hazards 1.................................................................
1-3. Additional Symbols For Installation, Operation, And Maintenance 3.............................
1-4. California Proposition 65 Warnings 4......................................................
1-5. Principal Safety Standards 4.............................................................
1-6. EMF Information 4.....................................................................
SECTION 2 CONSIGNES DE SÉCURITÉ LIRE AVANT UTILISATION 5...........................
2-1. Symboles utilisés 5.....................................................................
2-2. Dangers relatifs au soudage à l’arc 5......................................................
2-3. Dangers supplémentaires en relation avec l’installation, le fonctionnement et la maintenance 7.....
2-4. Proposition californienne 65 Avertissements 8..............................................
2-5. Principales normes de sécurité 9.........................................................
2-6. Informations relatives aux CEM 9.........................................................
SECTION 3 INSTALLATION 11................................................................
3-1. Specifications 11........................................................................
3-2. Dimensions And Weight 11...............................................................
3-3. Duty Cycle And Overheating 12...........................................................
3-4. Volt-Ampere Curves 12..................................................................
3-5. Serial Number And Rating Label Location 13................................................
3-6. Selecting A Location 13..................................................................
3-7. Connection Diagram 13..................................................................
3-8. Optional Tandem Connection Diagram 14...................................................
3-9. Rear Panel Receptacles And Supplementary Protectors 15....................................
3-10. Connecting To Weld Terminals 15..........................................................
3-11. Selecting Weld Cable Sizes* 16...........................................................
3-12. Devicenet Receptacle 17.................................................................
3-13. Motor Control Receptacle Functions 17.....................................................
3-14. E-Stop Receptacle Functions 17...........................................................
3-15. Tandem Receptacle 17...................................................................
3-16. Electrical Service Guide 18...............................................................
3-17. Remote Program Select 18...............................................................
3-18. Remote Program Setting 18..............................................................
3-19. Touch Sensor Operation 18...............................................................
3-20. Connecting 3Phase Input Power 20.......................................................
3-21. Connecting 3Phase Input Power 21.......................................................
SECTION 4 OPERATION 22...................................................................
4-1. Operational Terms 22....................................................................
4-2. Front Panel Controls (See Section 4-3) 24..................................................
4-3. Front Panel Controls - Continued (See Section 4-2) 25........................................
4-4. Front Panel Switches 25.................................................................
4-5. Reset Mode 26.........................................................................
SECTION 5 MAINTENANCE 27................................................................
5-1. Routine Maintenance 27.................................................................
5-2. Blowing Out Inside Of Unit 27.............................................................
TABLE OF CONTENTS
SECTION 6 SAFETY PRECAUTIONS FOR SERVICING 28........................................
6-1. Symbol Usage 28.......................................................................
6-2. Servicing Hazards 28....................................................................
6-3. California Proposition 65 Warnings 29......................................................
6-4. EMF Information 29.....................................................................
SECTION 7 TROUBLESHOOTING 30..........................................................
7-1. Set Value Mode 30......................................................................
7-2. Diagnostics 31.........................................................................
7-3. Removing Cover and Measuring Input Capacitor Voltage 33....................................
7-4. Process Control Module PC4 Diagnostic LEDs 34............................................
7-5. Diagnostic LEDs On Process Control Module PC4 34.........................................
7-6. Wire Feed Module PC6 Diagnostic LEDs And Dip Switch Settings 35............................
7-7. Diagnostic LEDs On Wire Feed Module PC6 35..............................................
7-8. User Interface Module PC7 Diagnostic LEDs 36.............................................
7-9. Diagnostic LEDs On User Interface Module PC7 36..........................................
7-10. Network And Module Status LEDs 37......................................................
7-11. Troubleshooting 37......................................................................
SECTION 8 ELECTRICAL DIAGRAMS 38.......................................................
SECTION 9 PARTS LIST 44...................................................................
WARRANTY
OM-240 146 Page 1
SECTION 1 SAFETY PRECAUTIONS - READ BEFORE USING
som 201110
7
Protect yourself and others from injury — read, follow, and save these important safety precautions and operating instructions.
1-1. Symbol Usage
DANGER! Indicates a hazardous situation which, if
not avoided, will result in death or serious injury. The
possible hazards are shown in the adjoining symbols
or explained in the text.
Indicates a hazardous situation which, if not avoided,
could result in death or serious injury. The possible
hazards are shown in the adjoining symbols or ex-
plained in the text.
NOTICE Indicates statements not related to personal injury.
. Indicates special instructions.
This group of symbols means Warning! Watch Out! ELECTRIC
SHOCK, MOVING PARTS, and HOT PARTS hazards. Consult sym-
bols and related instructions below for necessary actions to avoid the
hazards.
1-2. Arc Welding Hazards
The symbols shown below are used throughout this manual
to call attention to and identify possible hazards. When you
see the symbol, watch out, and follow the related instructions
to avoid the hazard. The safety information given below is
only a summary of the more complete safety information
found in the Safety Standards listed in Section 1-5. Read and
follow all Safety Standards.
Only qualified persons should install, operate, maintain, and
repair this unit.
During operation, keep everybody, especially children, away.
ELECTRIC SHOCK can kill.
Touching live electrical parts can cause fatal shocks
or severe burns. The electrode and work circuit is
electrically live whenever the output is on. The input
power circuit and machine internal circuits are also
live when power is on. In semiautomatic or automatic
wire welding, the wire, wire reel, drive roll housing,
and all metal parts touching the welding wire are
electrically live. Incorrectly installed or improperly
grounded equipment is a hazard.
D Do not touch live electrical parts.
D Wear dry, hole-free insulating gloves and body protection.
D Insulate yourself from work and ground using dry insulating mats
or covers big enough to prevent any physical contact with the work
or ground.
D Do not use AC output in damp areas, if movement is confined, or if
there is a danger of falling.
D Use AC output ONLY if required for the welding process.
D If AC output is required, use remote output control if present on
unit.
D Additional safety precautions are required when any of the follow-
ing electrically hazardous conditions are present: in damp
locations or while wearing wet clothing; on metal structures such
as floors, gratings, or scaffolds; when in cramped positions such
as sitting, kneeling, or lying; or when there is a high risk of unavoid-
able or accidental contact with the workpiece or ground. For these
conditions, use the following equipment in order presented: 1) a
semiautomatic DC constant voltage (wire) welder, 2) a DC manual
(stick) welder, or 3) an AC welder with reduced open-circuit volt-
age. In most situations, use of a DC, constant voltage wire welder
is recommended. And, do not work alone!
D Disconnect input power or stop engine before installing or
servicing this equipment. Lockout/tagout input power according to
OSHA 29 CFR 1910.147 (see Safety Standards).
D Properly install, ground, and operate this equipment according to
its Owners Manual and national, state, and local codes.
D Always verify the supply ground check and be sure that input
power cord ground wire is properly connected to ground terminal in
disconnect box or that cord plug is connected to a properly
grounded receptacle outlet.
D When making input connections, attach proper grounding conduc-
tor first double-check connections.
D Keep cords dry, free of oil and grease, and protected from hot metal
and sparks.
D Frequently inspect input power cord for damage or bare wiring
replace cord immediately if damaged bare wiring can kill.
D Turn off all equipment when not in use.
D Do not use worn, damaged, undersized, or poorly spliced cables.
D Do not drape cables over your body.
D If earth grounding of the workpiece is required, ground it directly
with a separate cable.
D Do not touch electrode if you are in contact with the work, ground,
or another electrode from a different machine.
D Do not touch electrode holders connected to two welding ma-
chines at the same time since double open-circuit voltage will be
present.
D Use only well-maintained equipment. Repair or replace damaged
parts at once. Maintain unit according to manual.
D Wear a safety harness if working above floor level.
D Keep all panels and covers securely in place.
D Clamp work cable with good metal-to-metal contact to workpiece
or worktable as near the weld as practical.
D Insulate work clamp when not connected to workpiece to prevent
contact with any metal object.
D Do not connect more than one electrode or work cable to any
single weld output terminal. Disconnect cable for process not in
use.
SIGNIFICANT DC VOLTAGE exists in inverter weld-
ing power sources AFTER removal of input power.
D Turn Off inverter, disconnect input power, and discharge input
capacitors according to instructions in Maintenance Section
before touching any parts.
HOT PARTS can burn.
D Do not touch hot parts bare handed.
D Allow cooling period before working on equip-
ment.
D To handle hot parts, use proper tools and/or
wear heavy, insulated welding gloves and
clothing to prevent burns.
OM-240 146 Page 2
Welding produces fumes and gases. Breathing
these fumes and gases can be hazardous to your
health.
FUMES AND GASES can be hazardous.
D Keep your head out of the fumes. Do not breathe the fumes.
D If inside, ventilate the area and/or use local forced ventilation at the
arc to remove welding fumes and gases.
D If ventilation is poor, wear an approved air-supplied respirator.
D Read and understand the Material Safety Data Sheets (MSDSs)
and the manufacturer’s instructions for metals, consumables,
coatings, cleaners, and degreasers.
D Work in a confined space only if it is well ventilated, or while
wearing an air-supplied respirator. Always have a trained watch-
person nearby. Welding fumes and gases can displace air and
lower the oxygen level causing injury or death. Be sure the breath-
ing air is safe.
D Do not weld in locations near degreasing, cleaning, or spraying op-
erations. The heat and rays of the arc can react with vapors to form
highly toxic and irritating gases.
D Do not weld on coated metals, such as galvanized, lead, or
cadmium plated steel, unless the coating is removed from the weld
area, the area is well ventilated, and while wearing an air-supplied
respirator. The coatings and any metals containing these elements
can give off toxic fumes if welded.
Arc rays from the welding process produce intense
visible and invisible (ultraviolet and infrared) rays
that can burn eyes and skin. Sparks fly off from the
weld.
D Wear an approved welding helmet fitted with a proper shade of
filter lenses to protect your face and eyes from arc rays and
sparks when welding or watching (see ANSI Z49.1 and Z87.1
listed in Safety Standards).
D Wear approved safety glasses with side shields under your
helmet.
D Use protective screens or barriers to protect others from flash,
glare and sparks; warn others not to watch the arc.
D Wear protective clothing made from durable, flame-resistant
material (leather, heavy cotton, or wool) and foot protection.
ARC RAYS can burn eyes and skin.
Welding on closed containers, such as tanks,
drums, or pipes, can cause them to blow up. Sparks
can fly off from the welding arc. The flying sparks, hot
workpiece, and hot equipment can cause fires and
burns. Accidental contact of electrode to metal objects can cause
sparks, explosion, overheating, or fire. Check and be sure the area is
safe before doing any welding.
WELDING can cause fire or explosion.
D Remove all flammables within 35 ft (10.7 m) of the welding arc. If
this is not possible, tightly cover them with approved covers.
D Do not weld where flying sparks can strike flammable material.
D Protect yourself and others from flying sparks and hot metal.
D Be alert that welding sparks and hot materials from welding can
easily go through small cracks and openings to adjacent areas.
D Watch for fire, and keep a fire extinguisher nearby.
D Be aware that welding on a ceiling, floor, bulkhead, or partition can
cause fire on the hidden side.
D Do not weld on containers that have held combustibles, or on
closed containers such as tanks, drums, or pipes unless they are
properly prepared according to AWS F4.1 and AWS A6.0 (see
Safety Standards).
D Do not weld where the atmosphere may contain flammable dust,
gas, or liquid vapors (such as gasoline).
D Connect work cable to the work as close to the welding area as
practical to prevent welding current from traveling long, possibly
unknown paths and causing electric shock, sparks, and fire
hazards.
D Do not use welder to thaw frozen pipes.
D Remove stick electrode from holder or cut off welding wire at
contact tip when not in use.
D Wear oil-free protective garments such as leather gloves, heavy
shirt, cuffless trousers, high shoes, and a cap.
D Remove any combustibles, such as a butane lighter or matches,
from your person before doing any welding.
D After completion of work, inspect area to ensure it is free of sparks,
glowing embers, and flames.
D Use only correct fuses or circuit breakers. Do not oversize or by-
pass them.
D Follow requirements in OSHA 1910.252 (a) (2) (iv) and NFPA 51B
for hot work and have a fire watcher and extinguisher nearby.
FLYING METAL or DIRT can injure eyes.
D Welding, chipping, wire brushing, and grinding
cause sparks and flying metal. As welds cool,
they can throw off slag.
D Wear approved safety glasses with side
shields even under your welding helmet.
BUILDUP OF GAS can injure or kill.
D Shut off compressed gas supply when not in use.
D Always ventilate confined spaces or use
approved air-supplied respirator.
ELECTRIC AND MAGNETIC FIELDS (EMF
)
can affect Implanted Medical Devices.
D Wearers of Pacemakers and other Implanted
Medical Devices should keep away.
D Implanted Medical Device wearers should consult their doctor
and the device manufacturer before going near arc welding, spot
welding, gouging, plasma arc cutting, or induction heating
operations.
NOISE can damage hearing.
Noise from some processes or equipment can
damage hearing.
D Wear approved ear protection if noise level is
high.
Compressed gas cylinders contain gas under high
pressure. If damaged, a cylinder can explode. Since
gas cylinders are normally part of the welding
process, be sure to treat them carefully.
CYLINDERS can explode if damaged.
D Protect compressed gas cylinders from excessive heat, mechani-
cal shocks, physical damage, slag, open flames, sparks, and arcs.
D Install cylinders in an upright position by securing to a stationary
support or cylinder rack to prevent falling or tipping.
D Keep cylinders away from any welding or other electrical circuits.
D Never drape a welding torch over a gas cylinder.
D Never allow a welding electrode to touch any cylinder.
D Never weld on a pressurized cylinder explosion will result.
D Use only correct compressed gas cylinders, regulators, hoses,
and fittings designed for the specific application; maintain them
and associated parts in good condition.
D Turn face away from valve outlet when opening cylinder valve.
D Keep protective cap in place over valve except when cylinder is in
use or connected for use.
D Use the right equipment, correct procedures, and sufficient num-
ber of persons to lift and move cylinders.
D Read and follow instructions on compressed gas cylinders,
associated equipment, and Compressed Gas Association (CGA)
publication P-1 listed in Safety Standards.
OM-240 146 Page 3
1-3. Additional Symbols For Installation, Operation, And Maintenance
FIRE OR EXPLOSION hazard.
D Do not install or place unit on, over, or near
combustible surfaces.
D Do not install unit near flammables.
D Do not overload building wiring be sure power supply system is
properly sized, rated, and protected to handle this unit.
FALLING EQUIPMENT can injure.
D Use lifting eye to lift unit only, NOT running
gear, gas cylinders, or any other accessories.
D Use equipment of adequate capacity to lift and
support unit.
D If using lift forks to move unit, be sure forks are long enough to
extend beyond opposite side of unit.
D Keep equipment (cables and cords) away from moving vehicles
when working from an aerial location.
D Follow the guidelines in the Applications Manual for the Revised
NIOSH Lifting Equation (Publication No. 94110) when manu-
ally lifting heavy parts or equipment.
OVERUSE can cause OVERHEATING
D Allow cooling period; follow rated duty cycle.
D Reduce current or reduce duty cycle before
starting to weld again.
D Do not block or filter airflow to unit.
FLYING SPARKS can injure.
D Wear a face shield to protect eyes and face.
D Shape tungsten electrode only on grinder with
proper guards in a safe location wearing proper
face, hand, and body protection.
D Sparks can cause fires — keep flammables away.
STATIC (ESD) can damage PC boards.
D Put on grounded wrist strap BEFORE handling
boards or parts.
D Use proper static-proof bags and boxes to
store, move, or ship PC boards.
MOVING PARTS can injure.
D Keep away from moving parts.
D Keep away from pinch points such as drive
rolls.
WELDING WIRE can injure.
D Do not press gun trigger until instructed to do
so.
D Do not point gun toward any part of the body,
other people, or any metal when threading
welding wire.
BATTERY EXPLOSION can injure.
D Do not use welder to charge batteries or jump
start vehicles unless it has a battery charging
feature designed for this purpose.
MOVING PARTS can injure.
D Keep away from moving parts such as fans.
D Keep all doors, panels, covers, and guards
closed and securely in place.
D Have only qualified persons remove doors, panels, covers, or
guards for maintenance and troubleshooting as necessary.
D Reinstall doors, panels, covers, or guards when maintenance is
finished and before reconnecting input power.
READ INSTRUCTIONS.
D Read and follow all labels and the Owners
Manual carefully before installing, operating, or
servicing unit. Read the safety information at
the beginning of the manual and in each
section.
D Use only genuine replacement parts from the manufacturer.
D Perform maintenance and service according to the Owners
Manuals, industry standards, and national, state, and local
codes.
H.F. RADIATION can cause interference.
D High-frequency (H.F.) can interfere with radio
navigation, safety services, computers, and
communications equipment.
D Have only qualified persons familiar with
electronic equipment perform this installation.
D The user is responsible for having a qualified electrician prompt-
ly correct any interference problem resulting from the installa-
tion.
D If notified by the FCC about interference, stop using the
equipment at once.
D Have the installation regularly checked and maintained.
D Keep high-frequency source doors and panels tightly shut, keep
spark gaps at correct setting, and use grounding and shielding to
minimize the possibility of interference.
ARC WELDING can cause interference.
D Electromagnetic energy can interfere with
sensitive electronic equipment such as
computers and computer-driven equipment
such as robots.
D Be sure all equipment in the welding area is
electromagnetically compatible.
D To reduce possible interference, keep weld cables as short as
possible, close together, and down low, such as on the floor.
D Locate welding operation 100 meters from any sensitive elec-
tronic equipment.
D Be sure this welding machine is installed and grounded
according to this manual.
D If interference still occurs, the user must take extra measures
such as moving the welding machine, using shielded cables,
using line filters, or shielding the work area.
OM-240 146 Page 4
1-4. California Proposition 65 Warnings
Welding or cutting equipment produces fumes or gases
which contain chemicals known to the State of California to
cause birth defects and, in some cases, cancer. (California
Health & Safety Code Section 25249.5 et seq.)
This product contains chemicals, including lead, known to
the state of California to cause cancer, birth defects, or other
reproductive harm. Wash hands after use.
1-5. Principal Safety Standards
Safety in Welding, Cutting, and Allied Processes, ANSI Standard Z49.1,
is available as a free download from the American Welding Society at
http://www.aws.org or purchased from Global Engineering Documents
(phone: 1-877-413-5184, website: www.global.ihs.com).
Safe Practices for the Preparation of Containers and Piping for Welding
and Cutting, American Welding Society Standard AWS F4.1, from Glob-
al Engineering Documents (phone: 1-877-413-5184, website:
www.global.ihs.com).
Safe Practices for Welding and Cutting Containers that have Held Com-
bustibles, American Welding Society Standard AWS A6.0, from Global
Engineering Documents (phone: 1-877-413-5184,
website: www.global.ihs.com).
National Electrical Code, NFPA Standard 70, from National Fire Protec-
tion Association, Quincy, MA 02269 (phone: 1-800-344-3555, website:
www.nfpa.org and www. sparky.org).
Safe Handling of Compressed Gases in Cylinders, CGA Pamphlet P-1,
from Compressed Gas Association, 14501 George Carter Way, Suite
103, Chantilly, VA 20151 (phone: 703-788-2700, website:www.cga-
net.com).
Safety in Welding, Cutting, and Allied Processes, CSA Standard
W117.2, from Canadian Standards Association, Standards Sales, 5060
Spectrum Way, Suite 100, Ontario, Canada L4W 5NS (phone:
800-463-6727, website: www.csa-international.org).
Safe Practice For Occupational And Educational Eye And Face Protec-
tion, ANSI Standard Z87.1, from American National Standards Institute,
25 West 43rd Street, New York, NY 10036 (phone: 212-642-4900, web-
site: www.ansi.org).
Standard for Fire Prevention During Welding, Cutting, and Other Hot
Work, NFPA Standard 51B, from National Fire Protection Association,
Quincy, MA 02269 (phone: 1-800-344-3555, website: www.nfpa.org.
OSHA, Occupational Safety and Health Standards for General Indus-
try, Title 29, Code of Federal Regulations (CFR), Part 1910, Subpart Q,
and Part 1926, Subpart J, from U.S. Government Printing Office, Super-
intendent of Documents, P.O. Box 371954, Pittsburgh, PA 15250-7954
(phone: 1-866-512-1800) (there are 10 OSHA Regional Offices—
phone for Region 5, Chicago, is 312-353-2220, website:
www.osha.gov).
Applications Manual for the Revised NIOSH Lifting Equation, The Na-
tional Institute for Occupational Safety and Health (NIOSH), 1600
Clifton Rd, Atlanta, GA 30333 (phone: 1-800-232-4636, website:
www.cdc.gov/NIOSH).
1-6. EMF Information
Electric current flowing through any conductor causes localized electric
and magnetic fields (EMF). Welding current creates an EMF field
around the welding circuit and welding equipment. EMF fields may inter-
fere with some medical implants, e.g. pacemakers. Protective
measures for persons wearing medical implants have to be taken. For
example, restrict access for passersby or conduct individual risk as-
sessment for welders. All welders should use the following procedures
in order to minimize exposure to EMF fields from the welding circuit:
1. Keep cables close together by twisting or taping them, or using a
cable cover.
2. Do not place your body between welding cables. Arrange cables
to one side and away from the operator.
3. Do not coil or drape cables around your body.
4. Keep head and trunk as far away from the equipment in the
welding circuit as possible.
5. Connect work clamp to workpiece as close to the weld as
possible.
6. Do not work next to, sit or lean on the welding power source.
7. Do not weld whilst carrying the welding power source or wire
feeder.
About Implanted Medical Devices:
Implanted Medical Device wearers should consult their doctor and the
device manufacturer before performing or going near arc welding, spot
welding, gouging, plasma arc cutting, or induction heating operations.
If cleared by your doctor, then following the above procedures is recom-
mended.
OM-240 146 Page 9
2-5. Principales normes de sécuri
Safety in Welding, Cutting, and Allied Processes, ANSI Standard Z49.1,
is available as a free download from the American Welding Society at
http://www.aws.org or purchased from Global Engineering Documents
(phone: 1-877-413-5184, website: www.global.ihs.com).
Safe Practices for the Preparation of Containers and Piping for Welding
and Cutting, American Welding Society Standard AWS F4.1, from Glob-
al Engineering Documents (phone: 1-877-413-5184, website:
www.global.ihs.com).
Safe Practices for Welding and Cutting Containers that have Held Com-
bustibles, American Welding Society Standard AWS A6.0, from Global
Engineering Documents (phone: 1-877-413-5184,
website: www.global.ihs.com).
National Electrical Code, NFPA Standard 70, from National Fire Protec-
tion Association, Quincy, MA 02269 (phone: 1-800-344-3555, website:
www.nfpa.org and www. sparky.org).
Safe Handling of Compressed Gases in Cylinders, CGA Pamphlet P-1,
from Compressed Gas Association, 14501 George Carter Way, Suite
103, Chantilly, VA 20151 (phone: 703-788-2700, website:www.cga-
net.com).
Safety in Welding, Cutting, and Allied Processes, CSA Standard
W117.2, from Canadian Standards Association, Standards Sales, 5060
Spectrum Way, Suite 100, Ontario, Canada L4W 5NS (phone:
800-463-6727, website: www.csa-international.org).
Safe Practice For Occupational And Educational Eye And Face Protec-
tion, ANSI Standard Z87.1, from American National Standards Institute,
25 West 43rd Street, New York, NY 10036 (phone: 212-642-4900, web-
site: www.ansi.org).
Standard for Fire Prevention During Welding, Cutting, and Other Hot
Work, NFPA Standard 51B, from National Fire Protection Association,
Quincy, MA 02269 (phone: 1-800-344-3555, website: www.nfpa.org.
OSHA, Occupational Safety and Health Standards for General Indus-
try, Title 29, Code of Federal Regulations (CFR), Part 1910, Subpart Q,
and Part 1926, Subpart J, from U.S. Government Printing Office, Super-
intendent of Documents, P.O. Box 371954, Pittsburgh, PA 15250-7954
(phone: 1-866-512-1800) (there are 10 OSHA Regional Offices—
phone for Region 5, Chicago, is 312-353-2220, website:
www.osha.gov).
Applications Manual for the Revised NIOSH Lifting Equation, The Na-
tional Institute for Occupational Safety and Health (NIOSH), 1600
Clifton Rd, Atlanta, GA 30333 (phone: 1-800-232-4636, website:
www.cdc.gov/NIOSH).
2-6. Informations relatives aux CEM
Le courant électrique qui traverse tout conducteur génère des champs
électromagnétiques (CEM) à certains endroits. Le courant de soudage
crée un CEM autour du circuit et du matériel de soudage. Les CEM
peuvent créer des interférences avec certains implants médicaux
comme des stimulateurs cardiaques. Des mesures de protection pour
les porteurs d’implants médicaux doivent être prises: Limiter par
exemple tout accès aux passants ou procéder à une évaluation des
risques individuels pour les soudeurs. Tous les soudeurs doivent
appliquer les procédures suivantes pour minimiser l’exposition aux
CEM provenant du circuit de soudage:
1. Rassembler les câbles en les torsadant ou en les attachant avec
du ruban adhésif ou avec une housse.
2. Ne pas se tenir au milieu des câbles de soudage. Disposer les
câbles d’un côté et à distance de l’opérateur.
3. Ne pas courber et ne pas entourer les câbles autour de votre
corps.
4. Maintenir la tête et le torse aussi loin que possible du matériel du
circuit de soudage.
5. Connecter la pince sur la pièce aussi près que possible de la
soudure.
6. Ne pas travailler à proximité d’une source de soudage, ni
s’asseoir ou se pencher dessus.
7. Ne pas souder tout en portant la source de soudage ou le
dévidoir.
En ce qui concerne les implants médicaux :
Les porteurs d’implants doivent d’abord consulter leur médecin avant
de s’approcher des opérations de soudage à l’arc, de soudage par
points, de gougeage, du coupage plasma ou de chauffage par induc-
tion. Si le médecin approuve, il est recommandé de suivre les
procédures précédentes.
OM-240 146 Page 11
SECTION 3 INSTALLATION
. Appearance of actual unit may vary from unit shown in manual.
3-1. Specifications
Input
Power
Rated
Welding
Output
Voltage
Range
Wire
Feed
Speed
Range**
Wire
Diameter
Range
Max
Open
Circuit
Voltage
DC
IP Rating
Amperes Input At Rated Load Output 60 Hz,
Three-Phase
Input
KVA
Input
KW
230 V 400V 460 V 575 V
Three
Phase
675 A @
44 V DC,
100%
Duty
Cycle
10-44 Standard:
50-1400
ipm
(1.3-35.6
mpm)
.035-.062
in.
(0.8-1.6
mm)
75 IP 21S{ 89
(0-1A*)
50
(0-1A*)
44
(0-1A*)
35
(0-1A*)
35.5
(0.8*)
34
(0.17*)
*While idling; Input amperage fluctuates while idling and is always less than one Ampere. Use one Ampere for power efficiency calculations.
**Wire feed speed ranges are for GMAW welding. While pulse welding, wire feed speed ranges may be more limited.
{This equipment is designed for indoor use and is not intended to be used or stored outside.
3-2. Dimensions And Weight
Hole Layout Dimensions
A
B
C
E
D
22 in.
(559 mm)
41 in.
(1041 mm)
Ref. 802 913-B
15-1/2 in.
(394 mm)
A 17-3/32 in. (434 mm)
B 17-3/8 in. (441 mm)
C 19-3/32 in. (485 mm)
D 16-3/32 in. (409 mm)
E 1/2 in. (13 mm)
Weight
215 lb (98 kg) Net
232 lb (105 kg) Ship
OM-240 146 Page 12
3-3. Duty Cycle And Overheating
Duty Cycle is percentage of 10 min-
utes that unit can weld at rated load
without overheating.
If unit overheats, thermostat(s)
opens, output stops, and cooling
fan runs. Wait fifteen minutes for
unit to cool. Reduce amperage or
duty cycle before welding.
NOTICE Exceeding duty cycle
can damage unit and void warranty.
Overheating
0
15
A/V
OR
Reduce Duty Cycle
Minutes
duty1 4/95 206 789-A
Continuous Welding
100% Duty Cycle At 675 Amperes
3-4. Volt-Ampere Curves
va_curve1 4/95 221 502-A
Volt-ampere curves show minimum
and maximum voltage and amper-
age output capabilities of unit.
Curves of other settings fall be-
tween curves shown.
. This volt-ampere curve repre-
sents the dynamic output of the
unit with a static load.
0
10
20
30
40
50
60
70
80
0 100 200 300 400 500 600 700 800 900 1000
CV MODE
VOLTAG E
AMPERES
OM-240 146 Page 13
3-5. Serial Number And Rating Label Location
The serial number and rating information for this product is located on the front. Use rating label to determine input power requirements and/or rated
output. For future reference, write serial number in space provided on back cover of this manual.
3-6. Selecting A Location
loc_2 3/96 -Ref. 802 913-B
! Do not stack units. Beware of
tipping.
1 Lifting Forks
Use lifting forks to move unit.
Extend forks beyond opposite side
of unit.
2 Hand Cart
Use cart or similar device to move
unit.
3 Line Disconnect Device
Locate unit near correct input
power supply.
Movement
2
Location
18 in.
(460 mm)
18 in.
(460 mm)
3
Tipping
1
OR
! Do not move or operate
unit where it could tip.
! Special installation may be required where gasoline or volatile
liquids are present see NEC Article 511 or CEC Section 20.
Ref. 802 913-B / Ref. 801 915-A
. The proper interface kit must
be installed in the welding pow-
er source/interface unit to allow
it to be connected to the robot.
1 Robot (Will Vary According To
Application)
2 Motor/Drive Assembly
3 Gas Cylinder
4 Gas Hose
5 Robot Control
6 Robot Input/Output Cable
7 Gas And Motor Control Cable
8 Welding Power
Source/Interface Unit
9 Negative () Weld Cable
10 Workpiece
11 Voltage Sensing Lead
(Optional)
. Positive (+) voltage sensing
lead is contained in the motor
cable.
12 Positive (+) Weld Cable
3-7. Connection Diagram
1
2 3
4
5
7
6
8
9
10
11
12
OM-240 146 Page 14
805 329-A
. The proper interface kit must be
installed in the welding power
source/interface unit to allow it to be
connected to the robot.
1 Robot (Will Vary According To
Application)
2 Motor/Drive Assembly (2)
3 Gas Cylinder
4 Gas Hose (2)
5 Robot Control
6 E-Stop Cable (2)
7 Gas And Motor Control Cable (2)
8 Welding Power Source/Interface
Unit (2)
9 Negative () Weld Cable (2)
10 Workpiece
11 Voltage Sensing Lead (2)
Recommended for Accu-pulse and RMD
(optional).
. Positive (+) voltage sensing lead is
contained in the motor cable.
12 Positive (+) Weld Cable (2)
13 Devicenet Robot/Welder Control
Cable (2)
14 Tandem Interconnect Cable
1
2
3
4
5
13
6
8
9
10
11
12
3-8. Optional Tandem Connection Diagram
7
8
9
14
OM-240 146 Page 15
Ref. 805 224-A
1 115 V 10 A AC Receptacle RC2
Receptacle supplies 60 Hz single-phase
power. Maximum output from RC2 is
limited by supplementary protector CB1 to
10 amps.
2 Supplementary Protector CB1
3 Supplementary Protector CB2
CB1 protects 115 volt receptacle RC2 from
overload. If CB1 opens, RC2 does not
work.
CB2 protects the wirefeed motor from
overload. If CB2 opens, the wirefeeder
does not work.
. Press button to reset breaker. If
breaker continue to open, contact a
Factory Authorized Service Agent.
4 Wirefeed/Gas Receptacle RC8
Use receptacle to connect gas and motor
control cable to power source (see
Sections 3-7 and 8 for additional
information).
5 Peripheral Receptacle RC25
. RC25 is not used with Devicenet.
6 E-Stop Receptacle RC
A short across the two sockets allows unit
to weld.
7 Devicenet Receptacle RC
Network control cable connection for ro-
bot/welder communication.
8 Optional Tandem Receptacle
Connect one end of a tandem interconnect
cable to this receptacle and the remaing
end of the cable to another tandem ready
Auto-Axcess welding power source.
2
3
3-9. Rear Panel Receptacles And Supplementary Protectors
1
7
6
4 5
8
3-10. Connecting To Weld Terminals
Ref. 802 913-B / 803 778-A
1
2
Tools Needed:
3/4 in. (19 mm)
6
4
5
Do not place
anything between
weld cable terminal
and copper bar.
3
Correct Installation
Incorrect Installation
! Turn off power before connecting to
weld output terminals.
! Failure to properly connect weld
cables may cause excessive heat
and start a fire, or damage your
machine.
Determine total cable length in weld circuit
(both positive and negative cables
combined) and maximum welding
amperes. See Section 3-12 to select proper
cable size.
1 Positive (+) Weld Output Terminal
2 Negative () Weld Output Terminal
Connect positive weld cable to Positive (+)
weld terminal and negative () cable to
Negative weld terminal.
3 Weld Output Terminal
4 Supplied Weld Output Terminal Nut
5 Weld Cable Terminal
6 Copper Bar
Remove supplied nut from weld output
terminal. Slide weld cable terminal onto
weld output terminal and secure with nut so
that weld cable terminal is tight against
copper bar. Do not place anything
between weld cable terminal and copper
bar. Make sure that the surfaces of the
weld cable terminal and copper bar are
clean.
. If using an electrode negative (straight polarity)
process, the volt sense lead must be connected
to the work.
OM-240 146 Page 16
3-11. Selecting Weld Cable Sizes*
NOTICE The Total Cable Length in Weld Circuit (see table below) is the combined length of both weld cables. For example, if the power source is
100 ft (30 m) from the workpiece, the total cable length in the weld circuit is 200 ft (2 cables x 100 ft). Use the 200 ft (60 m) column to determine cable
size.
Weld Cable Size*** and Total Cable (Copper) Length in Weld Circuit Not Exceeding****
100 ft (30 m) or Less
150 ft
(45 m)
200 ft
(60 m)
250 ft
(70 m)
300 ft
(90 m)
350 ft
(105 m)
400 ft
(120 m)
Weld Output Terminals
! Turn off power before
connecting to weld out-
put terminals.
! Do not use worn, dam-
aged, undersized, or
poorly spliced cables.
Welding
Amperes**
10 60%
Duty Cycle
60 100%
Duty Cycle
10 100% Duty Cycle
Positive
)
Negative
*
Ref. 802 914-B
100 4 (20) 4 (20) 4 (20) 3 (30) 2 (35) 1 (50) 1/0 (60) 1/0 (60)
150 3 (30) 3 (30) 2 (35) 1 (50) 1/0 (60) 2/0 (70) 3/0 (95) 3/0 (95)
200 3 (30) 2 (35) 1 (50) 1/0 (60) 2/0 (70) 3/0 (95)
4/0
(120)
4/0
(120)
250 2 (35) 1 (50) 1/0 (60) 2/0 (70) 3/0 (95)
4/0
(120)
2 ea. 2/0
(2x70)
2 ea. 2/0
(2x70)
300 1 (50) 1/0 (60) 2/0 (70) 3/0 (95)
4/0
(120)
2 ea. 2/0
(2x70)
2 ea. 3/0
(2x95)
2 ea. 3/0
(2x95)
350 1/0 (60) 2/0 (70) 3/0 (95)
4/0
(120)
2 ea. 2/0
(2x70)
2 ea. 3/0
(2x95)
2 ea. 3/0
(2x95)
2 ea. 4/0
(2x120)
400 1/0 (60) 2/0 (70) 3/0 (95)
4/0
(120)
2 ea. 2/0
(2x70)
2 ea. 3/0
(2x95)
2 ea. 4/0
(2x120)
2 ea. 4/0
(2x120)
500 2/0 (70) 3/0 (95)
4/0
(120)
2 ea. 2/0
(2x70)
2 ea. 3/0
(2x95)
2 ea. 4/0
(2x120)
3 ea. 3/0
(3x95)
3 ea. 3/0
(3x95)
600 3/0 (95) 4/0 (120)
2 ea. 2/0
(2x70)
2 ea. 3/0
(2x95)
2 ea. 4/0
(2x120)
3 ea. 3/0
(3x95)
3 ea. 4/0
(3x120)
3 ea. 4/0
(3x120)
700 4/0 (120)
2 ea. 2/0
(2x70)
2 ea. 3/0
(2x95)
2 ea. 4/0
(2x120)
3 ea. 3/0
(3x95)
3 ea. 4/0
(3x120)
3 ea. 4/0
(3x120)
4 ea. 4/0
(4x120)
800 4/0 (120)
2 ea. 2/0
(2x70)
2 ea. 3/0
(2x95)
2 ea. 4/0
(2x120)
3 ea. 4/0
(3x120)
3 ea. 4/0
(3x120)
4 ea. 4/0
(4x120)
4 ea. 4/0
(4x120)
900
2 ea. 2/0
(2x70)
2 ea. 3/0
(2x95)
2 ea. 4/0
(2x120)
3 ea. 3/0
(3x95)
1000
2 ea. 2/0
(2x70)
2 ea. 3/0
(2x95)
2 ea. 4/0
(2x120)
3 ea. 3/0
(3x95)
1250
2 ea. 3/0
(2x95)
2 ea. 4/0
(2x120)
3 ea. 3/0
(3x95)
4 ea. 3/0
(4x95)
* This chart is a general guideline and may not suit all applications. If cable overheats, use next size larger cable.
**Weld cable size (AWG) is based on either a 4 volts or less drop or a current density of at least 300 circular mils per ampere.
( ) = mm
2
for metric use
***For distances longer than those shown in this guide, call a factory applications rep. at 920-735-4505 (Miller) or 1-800-332-3281 (Hobart)
Ref. S-0007-G 200908
. In pulse welding applications using inverter power sources, peak currents can result in extreme voltage drops producing poor welding characteris-
tics with undersized cables. A recommendation for weld cable size is a minimum of 2/0 for 300 ampere welding power sources and 4/0 for 450
ampere welding power sources when total cable length is less than 100 ft (30m).
OM-240 146 Page 17
3-12. Devicenet Receptacle
Ref. 804 578-A
A
B
C
D
E
Socket Socket Information
A Chassis ground.
B +24 volts DC; available current is 1 ampere.
C +24 volts DC common.
D CAN H.
E CAN L.
3-13. Motor Control Receptacle Functions
D
H
BE
K
F
J
A
C
G
Ref. 804 578-A
Socket Socket Information
A Not used.
B Motor negative ().
C Tach A, 0 volts = low and 3.5 volts = high.
D Motor positive (+).
E Tach common.
F Gas valve, +40 volts DC when valve is on with respect to
socket K.
G Electrode sense.
H Tach +5 volts DC with respect to socket E.
J Tach B, 0 volts = low and 3.5 volts = high.
K Gas valve.
3-14. E-Stop Receptacle Functions
B
A
Ref. 804 578-A
Socket Socket Information
A A short to socket B allows unit to weld.
B A short to socket A allows unit to weld.
3-15. Tandem Receptacle
Ref. 804 578-A
A
B
C
D
E
Socket Socket Information
A Gnd.
B Peak enable/disable, input (high).
C Peak enable/disable, output.
D Peak enable/disable, input (low).
E Not used.
OM-240 146 Page 18
3-16. Electrical Service Guide
Elec Serv 201108
Failure to follow these electrical service guide recommendations could create an electric shock or fire hazard. These
recommendations are for a dedicated circuit sized for the rated output and duty cycle of the welding power source.
In dedicated circuit installations, the National Electrical Code (NEC) allows the receptacle or conductor rating to be less than the rating
of the circuit protection device. All components of the circuit must be physically compatible. See NEC articles 210.21, 630.11, and
630.12.
NOTICE INCORRECT INPUT POWER can damage this welding power source. This welding power source requires a CONTINUOUS supply of
input power at rated frequency(+10%) and voltage (+10%). Phase to ground voltage shall not exceed +10% of rated input voltage. Do not use a genera-
tor with automatic idle device (that idles engine when no load is sensed) to supply input power to this welding power source.
. Actual input voltage should not exceed 10% of indicated required input voltage. If actual input voltage is outside of this range, output may not
be available.
60 Hz Three Phase
Input Voltage (V) 230 400 460 575
Input Amperes (A) At Rated Output 89 50 44 35
Max Recommended Standard Fuse Rating In Amperes
1
Time-Delay Fuses
2
110 60 50 40
Normal Operating Fuses
3
125 80 70 50
Min Input Conductor Size In AWG
4
3 6 8 8
Max Recommended Input Conductor Length In Feet (Meters)
173
(53)
275
(84)
231
(70)
361
(110)
Min Grounding Conductor Size In AWG
4
6 8 8 10
Reference: 2011 National Electrical Code (NEC) (including article 630)
1 If a circuit breaker is used in place of a fuse, choose a circuit breaker with time-current curves comparable to the recommended fuse.
2 “Time-Delay” fuses are UL class “RK5” . See UL 248.
3 “Normal Operating” (general purpose - no intentional delay) fuses are UL class “K5” (up to and including 60 amps), and UL class “H” ( 65 amps and
above).
4 Conductor data in this section specifies conductor size (excluding flexible cord or cable) between the panelboard and the equipment per NEC Table
310.15(B)(16). If a flexible cord or cable is used, minimum conductor size may increase. See NEC Table 400.5(A) for flexible cord and cable
requirements.
3-17. Remote Program Select
. Remote Program Select is factory set to “On”. WaveWriter or File Management software is required to turn this function “Off”.
When Remote Program Select is On, a robot pendant may be used to select programs. When Off, program selection must be done from the welding
power source front panel.
3-18. Remote Program Setting
When Remote Program Select is “On”, program selection will be determined by remote input through Devicenet once a weld is initiated. Prior to weld-
ing, program selection can be done in a normal manner from the welding power source front control panel.
3-19. Touch Sensor Operation
The touch sensor feature allows the robot to locate a weldment using the wire feed system and welding power source. The weld output terminals pro-
vide a path for touch sensor voltage when this feature is turned on at the peripheral receptacle. Turning on touch sensor causes a DC voltage to be
present on the welding wire. When welding wire touches the weldment, the voltage sensing circuit closes, and a digital output signal is sent to the robot
control indicating weldment detection. Touch sensor DC voltage on the welding wire is 80 volts DC. As soon as touch sensor turns on, WIRE LIVE
appears on the front panel display.
OM-240 146 Page 20
3-20. Connecting 3Phase Input Power
Input5 201205 Ref. 803 766-C / 802 915-A / 218 005-C
Tools Needed:
5/16 in.
Route ground conductor through
current transducer to ground terminal.
Route input power cable
through tubing inside unit.
2
218005C
ELECTRIC SHOCK can kill;
SIGNIFICANT DC VOLTAGE
exists after removal of
input power.
S Always wait 5 minutes after power
is turned off before working on unit.
S Check input capacitor voltage, and
be sure it is near 0 before touching
any parts.
Read Owner’s Manual.
L1
L2
L3
ThreePhase Input Connection
GND/PE GND/PE
WARNING
= GND/PE Earth Ground
L1
7
1
L2
L3
3
4
8
6
9
10
5
6
4
3
OM-240 146 Page 21
3-21. Connecting 3Phase Input Power
! Turn Off welding power source, and
check voltage on input capacitors
according to Section 7-3 before
proceeding.
! Installation must meet all National
and Local Codes have only qualified
persons make this installation.
! Disconnect and lockout/tagout input
power before connecting input
conductors from unit. Follow estab-
lished procedures regarding the in-
stallation and removal of lockout/
tagout devices.
! Make input power connections to the
welding power source first.
! Always connect green or
green/yellow conductor to supply
grounding terminal first, and never to
a line terminal.
NOTICE The Auto-Line circuitry in this unit
automatically adapts the power source to the
primary voltage being applied. Check input
voltage available at site. This unit can be con-
nected to any input power between 208 and
575 VAC without removing cover to relink the
power source.
See rating label on unit and check input volt-
age available at site.
1 Input Power Conductors (Customer
Supplied Cord)
Select size and length of conductors using
Section 3-16. Conductors must comply with
national, state, and local electrical codes. If
applicable, use lugs of proper amperage
capacity and correct hole size.
Welding Power Source Input Power
Connections
2 Strain Relief
Install strain relief of proper size for unit and
input conductors. Route conductors (cord)
through strain relief and tighten screws.
3 Welding Power Source Grounding
Terminal
4 Green Or Green/Yellow Grounding
Conductor
Connect input conductors as shown in
illustration.
Route green or green/yellow grounding
conductor through current transducer and
connect to welding power source grounding
terminal first.
5 Welding Power Source Line Terminals
6 Input Conductors L1, L2, L3
Connect input conductors L1, L2, and L3 to
welding power source line terminals.
Reinstall side panel onto welding power
source.
Disconnect Device Input Power
Connections
7 Disconnect Device (switch shown in
the OFF position)
8 Disconnect Device Grounding Terminal
9 Disconnect Device Line Terminals
Connect green or green/yellow grounding
conductor to disconnect device grounding
terminal first.
Connect input conductors L1, L2, and L3 to
disconnect device line terminals.
10 Over-Current Protection
Select type and size of over-current protec-
tion using Section 3-16 (fused disconnect
switch shown).
Close and secure door on line disconnect de-
vice. Follow established lockout/tagout pro-
cedures to put unit in service.
Input5 201205
Notes
Work like a Pro!
Pros weld and cut
safely. Read the
safety rules at
the beginning
of this manual.
OM-240 146 Page 22
SECTION 4 OPERATION
4-1. Operational Terms
The following is a list of terms and their definitions as they apply to this interface unit:
General Terms:
AccuCurve CV Pulse process using a pulse waveform with modified curves at particular locations within the waveform. Has
a distinguished change in arc characteristics. Front panel display is ACCU CURV.
Accu-pulse Pulse process utilizing constant current ramps with constant voltage control of peaks and backgrounds.
Adaptive response is controlled by peak and minimum current levels. Benefits are shorter arc lengths, better
puddle control, more tolerant of tip-to-work variation, less audible noise, no arc wandering, allows weld to fill in
at toes increasing travel speed and deposition, and more tolerant to poor fit up and gaps.
Accuspeed (optional) CV Pulse process designed for high travel speeds. Typically used in Robotic applications. Arc is designed to be
tight and fast. Front panel display is ACCU SPED.
Adjust Control knob used to change or set parameters and functions.
Amps Indicates average amperage while welding and 3 seconds hold value at end of weld.
Arc Adjust Term used to represent arc length adjustments in pulse programs. Increasing Arc Adjust increases the actual
arc length. Likewise, decreasing arc adjust shortens arc length. Arc Adjust is replaced by volts in MIG
programs.
Arc Control Pressing this button will allow setting of inductance in MIG mode and sharp arc in pulse, Accu-pulse, and RMD
(optional).
Arc Length Distance from end of wire electrode to workpiece.
Auto Thread Method of jogging wire without holding jog or trigger switch. Pressing Jog and Retract simultaneously will
automatically feed wire. Default setting is 72 inches at a feed rate of 700 ipm. Pressing jog, purge, or trigger
switch will terminate the auto-threading feature. These values can be changed using a PDA with File
Management/WaveWriter software.
Crater Allows setting of voltage/arc adjust, wire feed rate, and time value for arc ends (only available on Auto Axcess
models in the Arc On and Analog input or the Arc On and No Analog input modes, and can only be set with the
optional PDA with File Management software).
Gas Type Selection of shielding gas being used in application.
Inductance In short circuit GMAW welding, an increase in inductance will decrease the number of short circuit transfers per
second (provided no other changes are made) and increase the arc-on time. The increased arc-on time makes
the welding puddle more fluid.
MIG CV weld process with individual settings of voltage and wire speed.
Postflow Setting a time value for gas flow after arc end (only available on Auto Axcess models in the Arc On and Analog
input or the Arc On and No Analog input modes, and can only be set with the optional PDA with File Manage-
ment software).
Preflow Setting a time value for gas flow prior to arc start (only available on Auto Axcess models in the Arc On and
Analog input or the Arc On and No Analog input modes, and can only be set with the optional PDA with File
Management software).
Process A selection made for MIG, Pulse, Accu-pulse, and RMD (optional).
Process Set Up Selection procedure for entering program.
Program Eight active slots for selection of various processes, wire types, and parameters.
Program Load Enters selected program information (process, wire type, gas, etc.) into program slot (1-8).
Pulse Conventional pulse program using peak, background, pulse width, frequency, and peak voltage as factory
taught data. Adaptive method is controlled by frequency adjustment.
Retract Sequence function that allows the wire to move back towards the contact tip when a welding operation is
completed. Setting is both speed (IPM) and time (sec), (only available on Auto Axcess models in the Arc On
and Analog input or the Arc On and No Analog input modes, and can only be set with the optional PDA with File
Management software).
RMD (optional) RMD refers to Regulated Metal Deposition. A precisely controlled short-circuit transfer. Benefits of RMD are well
suited to thin materials, improves gap filling and spatter reduction. Provides less heat input into workpiece,
minimizes distortion and allows use of larger diameter wire on thin gauge materials.
Sequence Selecting Sequence will allow setting of preflow, start, crater, postflow, and retract times and parameters (only
available on Auto Axcess models in the Arc On and Analog input or the Arc On and No Analog input modes).
Sharp Arc In pulse and Accu-pulse mode this adjustment changes the arc cone by adjusting the preprogrammed factory
pulse data. In RMD (optional) this control will affect the arc in much the same way as inductance.
/