Corsair CP-8920202 Product information

  • Hello! I am an AI chatbot trained to assist you with the Corsair CP-8920202 Product information. I’ve already reviewed the document and can help you find the information you need or explain it in simple terms. Just ask your questions, and providing more details will help me assist you more effectively!
Using Link with a Corsair AXi Digital Power Supply
The Corsair AXi Series PSUs have a lot of premium features. They use a digital signal processor
for better performance, they're fully modular, and have a zero RPM fan mode at low loads. But
one of the coolest things about the AXi power supplies, is their compatibility with the new
Corsair Link software. Today, we take a look at the Corsair Link 2 software, or just "Link" for
short, and more specifically how it gives you the ability to monitor AC input, DC output, the
temperature and the fan speed of an AXi power supply.
The first thing I want to do is open up the "Graph" tab and set what I want to monitor in the
"Config Panel" of this tab...
Above, you can see that I've checked boxes asking to have my two graphics cards' temperatures
and fans graphed, as well as my CPU's temperature, the temperature of my AX860i power
supply, as well as the AX860i's fan speed. I'm also monitoring the temperature of the coolant in
the Hydro Series H100 that is cooling the CPU and the RPMs of the two fans cooling the H100's
radiator.
While the system is idle, we can see that temperatures are relatively low. The AX860i is just
barely over room temperature and therefore, the fan is not spinning.
Over on the "Power" tab, we see that the AX860i is only producing 107.3W as I sit here
watching the Link software. It's pulling 117.8W from the wall, so our efficiency is 91%.
On this tab, we can also monitor our voltages, including the voltage of our AC mains, as well as
current for each of our +12V outputs.
There are also check boxes that allow you to turn OCP on for the 8-pin +12V outputs (labeled
"PCIe") on the power supply. OCP stands for "over current protection" and will shut down the
power supply if too much current is delivered on any of these outputs.
Finally, we see the AX860i's temperature and the fan RPM on this tab. This is the same
information we saw on the "Graph" tab, but in a different format. The fan is still not spinning
because the temperatures are still low, but if we wanted to increase the airflow within our chassis
just a bit, we can manually turn the fan speed up.
We start on the "System" tab...
On this tab, we can see everything that Corsair Link 2 monitors, but if we click on the "AX860i
Fan" icon on the left, a configuration panel opens up on the right. By default, we can see the fan
mode is set to "quiet" which means the fan isn't going to spin at low loads. Changing this is
easy...
The lowest setting is 40%, which equates to about 784 RPM. I can keep it like this and still not
hear the fan. And the fan will still ramp up even faster automatically if needed. Let's turn it up
even more to find out where I can start hearing the fan...
At 76%, the fan is spinning 1508 RPM. I can definitely hear that now. Well, that's enough of
that. Let's put the PSU fan back into "quiet" mode, fire up Prime95 and Furmark and see what
kind of power we produce and let the fan spin up all on its own...
Almost immediately, the temperatures of the CPU and graphics cards increase. Under this load,
we start to see the power supply fan ramp up as well.
After some time under load, we see our temperatures level out, an increase in the graphics cards'
fan's RPMs and the PSU's fan leveling off just over 500 RPM.
When we switch back over to the "Power" tab, we can see that our load has increased to 473.4W.
We're now pulling 502.9W from the wall and our efficiency is increased to 94%. We can see that
the amperage delivered on all of our +12V connectors has increased, the AX860i's temperature
has increased very slightly, from 26.5 to 28.8°C, and the fan is now spinning at 556 RPM.
Of course, when you're gaming you're probably not going to be able to watch your load,
temperatures and fan speeds while you're playing. For this reason, Corsair Link allows you to log
whatever information you'd like to keep track of in a CSV file. Simply check the boxes of the
components you want to monitor, browse to where you want to save the file and give the file a
name and click "start logging".
Understanding the Corsair AXi Series Digital Power Supplies
Replacing commonly used ICs with a digital signal processor in the Corsair AXi Series PSUs has
many benefits. Today, I'm going to explain the functions of the components that are replaced
within the Corsair Digital power supplies and how these changes benefit the end user.
The parts of the Corsair AXi Digital Power Supply that makes them unique when compared to
other desktop power supplies is the absence of a PFC/PWM controller IC (integrated circuit) on
the power supply's primary side and a supervisor IC on the power supply's secondary side. Both
of these parts have been replaced with DSP, which stands for "Digital Signal Processor".
AXi PSUs still use what's called a "resonant mode" topology like a lot of modern day super-
efficient power supplies, but typically in other resonant mode PSUs a PWM controller IC
changes the power supply's switching frequency based on an analog signal derived from the load
measured at the transformer. This makes the power supply more efficient at a wider range of
loads compared to other power supply topologies, but doing this alone can affect ripple and noise
and voltage regulation.
The resonant mode controller, shown above, is just about the only IC you'll find in an AXi power
supply that you may also see in other high end power supplies.
The supervisor IC is the heart of the power supply's safety functions. Functions like OCP (over
current protection, which is protection from any one output drawing too much current), OPP
(over-power protection, which prevents overloading), OVP (over-voltage protection, which
measures if voltage goes too high), UVP (under-voltage protection), and SCP (short circuit
protection). Temperatures are also measured within the power supply and this is reported to the
IC's OTP (over-temperature protection). If any value programmed into the IC is exceeded, the IC
is instructed to shut down the power supply.
Above is a supervisor IC found in a Corsair GS800 power supply.
In an effort to improve voltage regulation (drops in voltage as loads increase), the information
concerning the power supply's output voltage is sent back to the PWM controller via an analog
signal. This information moves relatively slow when compared to the ever-varying loads of your
typical PC, so voltage regulation is still not as good as it can be.
Above is the PWM/PFC controller from a Corsair GS800 power supply.
AXi power supplies improve on this analog system by using the DSP. Like a supervisor IC, the
DSP measures all of the pertinent information on the secondary side, as well as taking the same
measurements on the primary side as your typical PFC/PWM controller IC. This information is
also analyzed by the DSP's microprocessor and adjustments are made to the different
components of the power supply in an effort to improve efficiency while maintaining very tight
voltage regulation and minimizing ripple and noise. Because the signals are digital instead of
analog and an inherently homogeneous DSP system is used to analyze the information as
opposed to multiple ICs, adjustments can be made much faster than can be made with the typical
set of ICs found in other desktop power supplies. And since the DSP is analyzing all of the same
outputs (and then some!), the DSP still has the ability to act as a supervisor IC and shut down the
power supply if any values exceed what is considered "safe" for the power supply or your
computer.
Here is an AX860i removed from the housing. This one PCB has all of the chips that are part of
the DSP system.
Let's zoom in on some of the chips on this PCB. Shall we?
Above is a picture of the Freescale Digital Signal Controller found in the AXi series of power
supplies. This chip handles what goes on on the primary side of the power supply.
This guy is responsible for the PFC (power factor correction) control, the PMW (pulse width
modulation) control, monitoring of the AC input's voltage, current and wattage and logical on/off
control, like shutting down for inrush, brownouts, etc.
Above we see two more ICs found inside an AXi series power supply. The chip on the bottom is
the main MCU, or "MCU I". The chip on the top is a USB MCU, or "MCU II". These guys
handle what goes on on the secondary side of the power supply.
The MCU I does what we call "housekeeping". It has a lot of the same functions as a supervisor
IC in an analog controlled PSU. Things like OCP, OPP, OVP, etc. are all monitored by this chip.
This chip also handles the PMBus (power management bus) and thermal monitoring and fan
control. The MCU I also monitors the power on (soft on/off) and power good signals coming
from the motherboard. On top of all of this, the MCU I also monitors the DC output for voltage
drop, ripple and noise and communicates back to the DSP to address any issues that may come
up.
The MCU II is the chip that allows the user to turn on/off the single/multiple +12V rail capability
of an AXi PSU via the Corsair Link software. The self test function is also controlled by this
chip.
Since the DSP accumulates all of this information about the power supply, and does so in real
time, we can deliver it to the end user via our Corsair Link software. Power supplies have
attempted to deliver similar information about the power supply to the end user in the past; either
via software or displayed on a 5.25" bay LCD. But since the information about the power supply
in these older units was accumulated via the PFC/PWM controller and supervisor IC, the
information had to be converted to a digital signal before being displayed. This adds a good deal
of cost and prevents the information from being delivered as close to real time as possible.
Using Corsair Link, we can monitor everything from AC input voltage, output wattage... even
the current being delivered to each graphics card's PCIe controller! Above you can see I've
enabled OCP on each modular connector (essentially making the AXi a multiple +12V rail
power supply) and turned all of the limits down to 20A.
We can also keep track of the temperature inside the power supply and how fast the fan is
spinning:
All in all, AXi Digital Power Supplies are so much more than your average desktop PSU on so
many levels. By utilizing a DSP, Corsair offers improved efficiency while maintaining stable
voltage output and minimizing unwanted ripple and noise. And because all of this information is
maintained in a digital format, and output to the Corsair Link software interface is practically
seamless!
Weight
0.41
Wattage
600, 400
Series
RMi, RMx, SF
Pin Out
Type 4
Product Family
COMPONENT ACCESSORIES
Channel Attribute
RETAIL
Product Name
Type 4 Gen. 3 Individually Sleeved Cables
Product Type
DC Cable Kit
Color
Black
/