Hobart Welding Products IRONMAN 275, M-25 Gun, OM-198 683C User manual

  • Hello! I am an AI chatbot trained to assist you with the Hobart Welding Products IRONMAN 275 User manual. I’ve already reviewed the document and can help you find the information you need or explain it in simple terms. Just ask your questions, and providing more details will help me assist you more effectively!
OM-198 683C
April 2000
Visit our website at
www.HobartWelders.com
Processes
Description
MIG (GMAW) Welding
Flux Cored (FCAW) Welding
Arc Welding Power Source
and Wire Feeder
IronMan 275
With Meters
And M-25 Gun
R
Hobart Welders manufactures a full line
of welders and welding related equipment.
For information on other quality Hobart
products, contact your local Hobart distributor
to receive the latest full line catalog or
individual catalog sheets. To locate your nearest
distributor or service agency call 1-877-Hobart1.
Thank you and congratulations on choosing Hobart.
Now you can get the job done and get it done right.
We know you don’t have time to do it any other way.
This Owners Manual is designed to help you get the
most out of your Hobart products. Please take time
to read the Safety precautions. They will help you
protect yourself against
potential hazards on the
worksite. We’ve made
installation and operation
quick and easy. With Hobart you can count on
years of reliable service with proper
maintenance. And if for some reason the unit
needs repair, there’s a Troubleshooting section
that will help you figure out what the problem
is. The parts list will then help you to decide
which exact part you may need to fix the
problem. Warranty and service information for
your particular model are also provided.
Hobart is registered to the
ISO 9001 Quality System
Standard.
Working as hard as you
do – every power source
from Hobart is backed by
the best warranty in the
business.
From Hobart to You
Hobart offers a Technical
Manual which provides
more detailed service and
parts information for your
unit. To obtain a Technical
Manual, contact your local
distributor. Your distributor
can also supply you with
Welding Process Manuals
such as SMAW, GTAW,
GMAW, and GMAW-P.
The following terms are
used interchangeably
throughout this manual:
MIG = GMAW
TABLE OF CONTENTS
SECTION 1 – SAFETY PRECAUTIONS - READ BEFORE USING 1. . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-1. Symbol Usage 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-2. Arc Welding Hazards 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-3. Additional Symbols For Installation, Operation, And Maintenance 3. . . . . . . . . . . . . . . . . . . . .
1-4. Principal Safety Standards 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-5. EMF Information 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SECTION 1 – CONSIGNES DE SECURITE – LIRE AVANT UTILISATION 5. . . . . . . . . . . . . . . . . . . . .
1-1. Signification des symboles 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-2. Dangers relatifs au soudage à larc 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-3. Dangers supplémentaires en relation avec linstallation, le fonctionnement
et la maintenance 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-4. Principales normes de sécurité 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-5. Information sur les champs électromagnétiques 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SECTION 2 – INSTALLATION 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-1. Specifications 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-2. Welding Power Source Duty Cycle And Overheating 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-3. Welding Gun Duty Cycle And Overheating 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-4. Volt-Ampere Curves 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-5. Installing Work Clamp 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-6. Installing Welding Gun 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-7. Connecting Olympic 30A Gun 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-8. Setting Gun Polarity For Wire Type 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-9. Installing Gas Supply 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-10. Installing Wire Spool and Adjusting Hub Tension 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-11. Positioning Jumper Links 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-12. Electrical Service Guide 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-13. Selecting A Location And Connecting Input Power 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-14. Threading Welding Wire 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-15. Weld Parameter 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SECTION 3 – OPERATION 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-1. Controls 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-2. Voltmeter And Wire Feed Speed Meter Operation 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SECTION 4 – MAINTENANCE &TROUBLESHOOTING 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-1. Routine Maintenance 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-2. Circuit Breaker CB1 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-3. Unit Overload 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-4. Replacing Gun Contact Tip 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-5. Changing Drive Roll and Wire Inlet Guide 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-6. Aligning Drive Rolls and Wire Guide 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-7. Cleaning Or Replacing Gun Liner 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-8. Replacing Switch And/Or Head Tube 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-9. Troubleshooting 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SECTION 5 – ELECTRICAL DIAGRAM 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SECTION 6 – PARTS LIST 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WARRANTY
OM-198 683C
WARNING
This product, when used
for welding or cutting,
produces fumes or
gases which contain
chemicals known to the
State of California to
cause birth defects and,
in some cases, cancer.
(California Health &
Safety Code Section
25249.5 et seq.)
OM-198 683 Page 1
SECTION 1 SAFETY PRECAUTIONS - READ BEFORE USING
som _nd_4/98
1-1. Symbol Usage
Means Warning! Watch Out! There are possible hazards
with this procedure! The possible hazards are shown in
the adjoining symbols.
Y Marks a special safety message.
. Means “Note”; not safety related.
This group of symbols means Warning! Watch Out! possible
ELECTRIC SHOCK, MOVING PARTS, and HOT PARTS hazards.
Consult symbols and related instructions below for necessary actions
to avoid the hazards.
1-2. Arc Welding Hazards
Y The symbols shown below are used throughout this manual to
call attention to and identify possible hazards. When you see
the symbol, watch out, and follow the related instructions to
avoid the hazard. The safety information given below is only
a summary of the more complete safety information found in
the Safety Standards listed in Section 1-4. Read and follow all
Safety Standards.
Y Only qualified persons should install, operate, maintain, and
repair this unit.
Y During operation, keep everybody, especially children, away.
ELECTRIC SHOCK can kill.
Touching live electrical parts can cause fatal shocks
or severe burns. The electrode and work circuit is
electrically live whenever the output is on. The input
power circuit and machine internal circuits are also
live when power is on. In semiautomatic or automatic wire welding, the
wire, wire reel, drive roll housing, and all metal parts touching the
welding wire are electrically live. Incorrectly installed or improperly
grounded equipment is a hazard.
D Do not touch live electrical parts.
D Wear dry, hole-free insulating gloves and body protection.
D Insulate yourself from work and ground using dry insulating mats
or covers big enough to prevent any physical contact with the work
or ground.
D Do not use AC output in damp areas, if movement is confined, or if
there is a danger of falling.
D Use AC output ONLY if required for the welding process.
D If AC output is required, use remote output control if present on
unit.
D Disconnect input power or stop engine before installing or
servicing this equipment. Lockout/tagout input power according to
OSHA 29 CFR 1910.147 (see Safety Standards).
D Properly install and ground this equipment according to its
Owners Manual and national, state, and local codes.
D Always verify the supply ground check and be sure that input
power cord ground wire is properly connected to ground terminal in
disconnect box or that cord plug is connected to a properly
grounded receptacle outlet.
D When making input connections, attach proper grounding conduc-
tor first double-check connections.
D Frequently inspect input power cord for damage or bare wiring
replace cord immediately if damaged bare wiring can kill.
D Turn off all equipment when not in use.
D Do not use worn, damaged, undersized, or poorly spliced cables.
D Do not drape cables over your body.
D If earth grounding of the workpiece is required, ground it directly
with a separate cable.
D Do not touch electrode if you are in contact with the work, ground,
or another electrode from a different machine.
D Use only well-maintained equipment. Repair or replace damaged
parts at once. Maintain unit according to manual.
D Wear a safety harness if working above floor level.
D Keep all panels and covers securely in place.
D Clamp work cable with good metal-to-metal contact to workpiece
or worktable as near the weld as practical.
D Insulate work clamp when not connected to workpiece to prevent
contact with any metal object.
D Do not connect more than one electrode or work cable to any
single weld output terminal.
SIGNIFICANT DC VOLTAGE exists after removal of
input power on inverters.
D Turn Off inverter, disconnect input power, and discharge input
capacitors according to instructions in Maintenance Section
before touching any parts.
Welding produces fumes and gases. Breathing
these fumes and gases can be hazardous to your
health.
FUMES AND GASES can be hazardous.
D Keep your head out of the fumes. Do not breathe the fumes.
D If inside, ventilate the area and/or use exhaust at the arc to remove
welding fumes and gases.
D If ventilation is poor, use an approved air-supplied respirator.
D Read the Material Safety Data Sheets (MSDSs) and the
manufacturers instructions for metals, consumables, coatings,
cleaners, and degreasers.
D Work in a confined space only if it is well ventilated, or while
wearing an air-supplied respirator. Always have a trained watch-
person nearby. Welding fumes and gases can displace air and
lower the oxygen level causing injury or death. Be sure the breath-
ing air is safe.
D Do not weld in locations near degreasing, cleaning, or spraying op-
erations. The heat and rays of the arc can react with vapors to form
highly toxic and irritating gases.
D Do not weld on coated metals, such as galvanized, lead, or
cadmium plated steel, unless the coating is removed from the weld
area, the area is well ventilated, and if necessary, while wearing an
air-supplied respirator. The coatings and any metals containing
these elements can give off toxic fumes if welded.
OM-198 683 Page 2
Arc rays from the welding process produce intense
visible and invisible (ultraviolet and infrared) rays
that can burn eyes and skin. Sparks fly off from the
weld.
ARC RAYS can burn eyes and skin.
D Wear a welding helmet fitted with a proper shade of filter to protect
your face and eyes when welding or watching (see ANSI Z49.1
and Z87.1 listed in Safety Standards).
D Wear approved safety glasses with side shields under your
helmet.
D Use protective screens or barriers to protect others from flash and
glare; warn others not to watch the arc.
D Wear protective clothing made from durable, flame-resistant mate-
rial (leather and wool) and foot protection.
Welding on closed containers, such as tanks,
drums, or pipes, can cause them to blow up. Sparks
can fly off from the welding arc. The flying sparks, hot
workpiece, and hot equipment can cause fires and
burns. Accidental contact of electrode to metal objects can cause
sparks, explosion, overheating, or fire. Check and be sure the area is
safe before doing any welding.
WELDING can cause fire or explosion.
D Protect yourself and others from flying sparks and hot metal.
D Do not weld where flying sparks can strike flammable material.
D Remove all flammables within 35 ft (10.7 m) of the welding arc. If
this is not possible, tightly cover them with approved covers.
D Be alert that welding sparks and hot materials from welding can
easily go through small cracks and openings to adjacent areas.
D Watch for fire, and keep a fire extinguisher nearby.
D Be aware that welding on a ceiling, floor, bulkhead, or partition can
cause fire on the hidden side.
D Do not weld on closed containers such as tanks, drums, or pipes,
unless they are properly prepared according to AWS F4.1 (see
Safety Standards).
D Connect work cable to the work as close to the welding area as
practical to prevent welding current from traveling long, possibly
unknown paths and causing electric shock and fire hazards.
D Do not use welder to thaw frozen pipes.
D Remove stick electrode from holder or cut off welding wire at
contact tip when not in use.
D Wear oil-free protective garments such as leather gloves, heavy
shirt, cuffless trousers, high shoes, and a cap.
D Remove any combustibles, such as a butane lighter or matches,
from your person before doing any welding.
FLYING METAL can injure eyes.
D Welding, chipping, wire brushing, and grinding
cause sparks and flying metal. As welds cool,
they can throw off slag.
D Wear approved safety glasses with side
shields even under your welding helmet.
BUILDUP OF GAS can injure or kill.
D Shut off shielding gas supply when not in use.
D Always ventilate confined spaces or use
approved air-supplied respirator.
HOT PARTS can cause severe burns.
D Do not touch hot parts bare handed.
D Allow cooling period before working on gun or
torch.
MAGNETIC FIELDS can affect pacemakers.
D Pacemaker wearers keep away.
D Wearers should consult their doctor before
going near arc welding, gouging, or spot
welding operations.
NOISE can damage hearing.
Noise from some processes or equipment can
damage hearing.
D Wear approved ear protection if noise level is
high.
Shielding gas cylinders contain gas under high
pressure. If damaged, a cylinder can explode. Since
gas cylinders are normally part of the welding
process, be sure to treat them carefully.
CYLINDERS can explode if damaged.
D Protect compressed gas cylinders from excessive heat, mechani-
cal shocks, slag, open flames, sparks, and arcs.
D Install cylinders in an upright position by securing to a stationary
support or cylinder rack to prevent falling or tipping.
D Keep cylinders away from any welding or other electrical circuits.
D Never drape a welding torch over a gas cylinder.
D Never allow a welding electrode to touch any cylinder.
D Never weld on a pressurized cylinder explosion will result.
D Use only correct shielding gas cylinders, regulators, hoses, and fit-
tings designed for the specific application; maintain them and
associated parts in good condition.
D Turn face away from valve outlet when opening cylinder valve.
D Keep protective cap in place over valve except when cylinder is in
use or connected for use.
D Read and follow instructions on compressed gas cylinders,
associated equipment, and CGA publication P-1 listed in Safety
Standards.
OM-198 683 Page 3
1-3. Additional Symbols For Installation, Operation, And Maintenance
FIRE OR EXPLOSION hazard.
D Do not install or place unit on, over, or near
combustible surfaces.
D Do not install unit near flammables.
D Do not overload building wiring be sure power supply system is
properly sized, rated, and protected to handle this unit.
FALLING UNIT can cause injury.
D Use lifting eye to lift unit only, NOT running
gear, gas cylinders, or any other accessories.
D Use equipment of adequate capacity to lift and
support unit.
D If using lift forks to move unit, be sure forks are
long enough to extend beyond opposite side of
unit.
OVERUSE can cause OVERHEATING
D Allow cooling period; follow rated duty cycle.
D Reduce current or reduce duty cycle before
starting to weld again.
D Do not block or filter airflow to unit.
STATIC (ESD) can damage PC boards.
D Put on grounded wrist strap BEFORE handling
boards or parts.
D Use proper static-proof bags and boxes to
store, move, or ship PC boards.
MOVING PARTS can cause injury.
D Keep away from moving parts.
D Keep away from pinch points such as drive
rolls.
WELDING WIRE can cause injury.
D Do not press gun trigger until instructed to do
so.
D Do not point gun toward any part of the body,
other people, or any metal when threading
welding wire.
MOVING PARTS can cause injury.
D Keep away from moving parts such as fans.
D Keep all doors, panels, covers, and guards
closed and securely in place.
H.F. RADIATION can cause interference.
D High-frequency (H.F.) can interfere with radio
navigation, safety services, computers, and
communications equipment.
D Have only qualified persons familiar with
electronic equipment perform this installation.
D The user is responsible for having a qualified electrician prompt-
ly correct any interference problem resulting from the installa-
tion.
D If notified by the FCC about interference, stop using the
equipment at once.
D Have the installation regularly checked and maintained.
D Keep high-frequency source doors and panels tightly shut, keep
spark gaps at correct setting, and use grounding and shielding to
minimize the possibility of interference.
ARC WELDING can cause interference.
D Electromagnetic energy can interfere with
sensitive electronic equipment such as
computers and computer-driven equipment
such as robots.
D Be sure all equipment in the welding area is
electromagnetically compatible.
D To reduce possible interference, keep weld cables as short as
possible, close together, and down low, such as on the floor.
D Locate welding operation 100 meters from any sensitive elec-
tronic equipment.
D Be sure this welding machine is installed and grounded
according to this manual.
D If interference still occurs, the user must take extra measures
such as moving the welding machine, using shielded cables,
using line filters, or shielding the work area.
1-4. Principal Safety Standards
Safety in Welding and Cutting, ANSI Standard Z49.1, from American
Welding Society, 550 N.W. LeJeune Rd, Miami FL 33126
Safety and Health Standards, OSHA 29 CFR 1910, from Superinten-
dent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.
Recommended Safe Practices for the Preparation for Welding and Cut-
ting of Containers That Have Held Hazardous Substances, American
Welding Society Standard AWS F4.1, from American Welding Society,
550 N.W. LeJeune Rd, Miami, FL 33126
National Electrical Code, NFPA Standard 70, from National Fire Protec-
tion Association, Batterymarch Park, Quincy, MA 02269.
Safe Handling of Compressed Gases in Cylinders, CGA Pamphlet P-1,
from Compressed Gas Association, 1235 Jefferson Davis Highway,
Suite 501, Arlington, VA 22202.
Code for Safety in Welding and Cutting, CSA Standard W117.2, from
Canadian Standards Association, Standards Sales, 178 Rexdale
Boulevard, Rexdale, Ontario, Canada M9W 1R3.
Safe Practices For Occupation And Educational Eye And Face
Protection, ANSI Standard Z87.1, from American National Standards
Institute, 1430 Broadway, New York, NY 10018.
Cutting And Welding Processes, NFPA Standard 51B, from National
Fire Protection Association, Batterymarch Park, Quincy, MA 02269.
OM-198 683 Page 4
1-5. EMF Information
Considerations About Welding And The Effects Of Low Frequency
Electric And Magnetic Fields
Welding current, as it flows through welding cables, will cause electro-
magnetic fields. There has been and still is some concern about such
fields. However, after examining more than 500 studies spanning 17
years of research, a special blue ribbon committee of the National
Research Council concluded that: The body of evidence, in the
committees judgment, has not demonstrated that exposure to power-
frequency electric and magnetic fields is a human-health hazard.
However, studies are still going forth and evidence continues to be
examined. Until the final conclusions of the research are reached, you
may wish to minimize your exposure to electromagnetic fields when
welding or cutting.
To reduce magnetic fields in the workplace, use the following
procedures:
1. Keep cables close together by twisting or taping them.
2. Arrange cables to one side and away from the operator.
3. Do not coil or drape cables around your body.
4. Keep welding power source and cables as far away from opera-
tor as practical.
5. Connect work clamp to workpiece as close to the weld as possi-
ble.
About Pacemakers:
Pacemaker wearers consult your doctor first. If cleared by your doctor,
then following the above procedures is recommended.
OM-198 683 Page 8
1-4. Principales normes de sécurité
Safety in Welding and Cutting, norme ANSI Z49.1, de lAmerican Wel-
ding Society, 550 N.W. Lejeune Rd, Miami FL 33126
Safety and Health Sandards, OSHA 29 CFR 1910, du Superintendent
of Documents, U.S. Government Printing Office, Washington, D.C.
20402.
Recommended Safe Practice for the Preparation for Welding and Cut-
ting of Containers That Have Held Hazardous Substances, norme AWS
F4.1, de lAmerican Welding Society, 550 N.W. Lejeune Rd, Miami FL
33126
National Electrical Code, NFPA Standard 70, de la National Fire Protec-
tion Association, Batterymarch Park, Quincy, MA 02269.
Safe Handling of Compressed Gases in Cylinders, CGA Pamphlet P-1,
de la Compressed Gas Association, 1235 Jefferson Davis Highway,
Suite 501, Arlington, VA 22202.
Règles de sécurité en soudage, coupage et procédés connexes, norme
CSA W117.2, de lAssociation canadienne de normalisation, vente de
normes, 178 Rexdale Boulevard, Rexdale (Ontario) Canada M9W 1R3.
Safe Practices For Occupation And Educational Eye And Face Protec-
tion, norme ANSI Z87.1, de lAmerican National Standards Institute,
1430 Broadway, New York, NY 10018.
Cutting and Welding Processes, norme NFPA 51B, de la National Fire
Protection Association, Batterymarch Park, Quincy, MA 02269.
1-5. Information sur les champs électromagnétiques
Données sur le soudage électrique et sur les effets, pour lorganisme,
des champs magnétiques basse fréquence
Le courant de soudage, pendant son passage dans les câbles de sou-
dage, causera des champs électromagnétiques. Il y a eu et il y a encore
un certain souci à propos de tels champs. Cependant, après avoir ex-
aminé plus de 500 études qui ont été faites pendant une période de
recherche de 17 ans, un comité spécial ruban bleu du National Re-
search Council a conclu: Laccumulation de preuves, suivant le
jugement du comité, na pas démontré que lexposition aux champs
magnétiques et champs électriques à haute fréquence représente un
risque à la santé humaine. Toutefois, des études sont toujours en cours
et les preuves continuent à être examinées. En attendant que les con-
clusions finales de la recherche soient établies, il vous serait
souhaitable de réduire votre exposition aux champs électromagnéti-
ques pendant le soudage ou le coupage.
Afin de réduire les champs électromagnétiques dans lenvironnement
de travail, respecter les consignes suivantes :
1 Garder les câbles ensembles en les torsadant ou en les
attachant avec du ruban adhésif.
2 Mettre tous les câbles du côté opposé de lopérateur.
3 Ne pas courber pas et ne pas entourer pas les câbles autour de
votre corps.
4 Garder le poste de soudage et les câbles le plus loin possible de
vous.
5 Relier la pince de masse le plus près possible de la zone de
soudure.
Consignes relatives aux stimulateurs cardiaques :
Les personnes qui portent un stimulateur cardiaque doivent avant tout
consulter leur docteur. Si vous êtes déclaré apte par votre docteur, il est
alors recommandé de respecter les consignes cidessus.
OM-198 683 Page 9
SECTION 2 INSTALLATION
2-1. Specifications
Max. Open- Amps Input at Rated Output, 50 or 60 Hz, Single-Phase
Rated Output
Circuit
Voltage
200 (208) V 230 V 400 V 460 V 575 V KVA KW
250 A at 28 VDC,
40% Duty Cycle
200 A at 28 VDC,
60% Duty Cycle
38 48
2.3*
42
2*
24
1.2*
21
1*
17
0.8*
9.8
0.46*
7.5
0.13*
Wire Type and Diameter Wire Feed Speed Dimensions Net Weight
Solid Steel Stainless Steel Flux Cored 25700 IPM H: 37 in (940 mm) 212 lb
.023 .045 in
(0.6 1.2 mm)
.023 .035 in
(0.6 0.9 mm)
.030 .045 in
(0.8 1.2 mm)
(.6517.8 m/min) W: 19 in (483 mm)
D: 30-1/4 in (768 mm)
(96 kg)
* While idling
Operating Temperature Range 20C to +40C Storage Temperature Range -30C to + 50C
2-2. Welding Power Source Duty Cycle And Overheating
4 Minutes Welding 6 Minutes Resting
6 Minutes Welding 4 Minutes Resting
Duty Cycle is percentage of 10 min-
utes that unit can weld at rated load
without overheating.
If unit overheats, thermostat(s)
opens, output stops, and cooling
fan runs. Wait fifteen minutes for
unit to cool. Reduce amperage or
voltage, or duty cycle before
welding.
Y Exceeding duty cycle can
damage unit and void
warranty.
Overheating
0
15
A or V
OR
Reduce Duty Cycle
Minutes
duty1 4/95 150 215-A
40% Duty Cycle At 250 Amperes
60% Duty Cycle At 200 Amperes
OM-198 683 Page 10
2-3. Welding Gun Duty Cycle And Overheating
CAUTION
WELDING LONGER THAN RATED DUTY CYCLE can damage gun and void warranty.
Do not weld at rated load longer than shown below.
Using gasless flux cored wire reduces gun duty cycle.
warn7.1 8/93
Duty Cycle is percentage of 10
minutes that gun can weld at
rated load without overheating.
Continuous Welding
SB1.1 8/93
0
10
Minutes
Definition .023 To .045 in (0.6 To 1.1 mm)
Hard Or Flux Cored Wires
100% Duty Cycle At 200 Amperes
Using CO
2
100% Duty Cycle At 150 Amperes
Using Mixed Gases
.023 To .045 in (0.6 To 1.1 mm) Hard Or Flux Cored Wires
60% Duty Cycle At 300 Amperes
Using CO
2
60% Duty Cycle At 200 Amperes
Using Mixed Gases
6 Minutes Welding 4 Minutes Resting
2-4. Volt-Ampere Curves
ssb1.1 10/91 196 844 / S-0700
1 Normal Volt-Ampere Curves
The volt-ampere curves show the
normal minimum and maximum
voltage and amperage output capa-
bilities of the welding power source.
Curves of other settings fall be-
tween the curves shown.
1
0
5
10
15
20
25
30
35
0 100 200 300 400
AMPERES
VOLTS
OM-198 683 Page 11
2-5. Installing Work Clamp
1 Work Cable
2 Boot
Slide boot onto work cable. Route
cable out front panel opening from
inside.
3 Negative () Output Terminal
Connect cable to terminal and
cover connection with boot.
4 Hardware
5 Work Clamp
Route cable through clamp handle
and secure as shown.
Close door.
802 474-A
Tools Needed:
1/2, 3/4 in
3
2
1
5
4
2-6. Installing Welding Gun
1 Drive Assembly
2 Gun Securing Knob
3 Gun End
Loosen securing knob. Insert gun
end through opening until it bottoms
against drive assembly (make sure
gun end does not touch drive rolls).
Tighten knob.
4 Gun Trigger Plug
Insert plug into receptacle, and
tighten threaded collar.
Close door.
Ref. 802 064-A
1
3
4
2
2-7. Connecting Olympic 30A Gun
The Olympic 30A welding gun connects directly to the 10-pin receptacle on the front of the welding power source no
adapter required. NOTE: Two welding guns may be connected to the welding power source at the same time, but only
one welding gun may be in use at any one time. If the triggers of both welding guns are pulled at the same time, the weld
output and wirefeed motor are disabled.
OM-198 683 Page 12
2-8. Setting Gun Polarity For Wire Type
1 Polarity Changeover Label
Information
Always read and follow manufac-
tures recommended polarity.
1
3/4, 11/16 in
Ref. 190 821-A
Changing Polarity
D
D
Wire Drive
Assembly Lead
Work Clamp Lead
+
Positive Terminal
Shown as shipped Electrode Positive (DCEP): For
solid steel, stainless steel, aluminum, or flux core with
gas wires (GMAW).
-
Negative Terminal
Electrode Negative (DCEN): Reverse lead connections
at terminals from that shown above for gasless flux core
wires (FCAW). Drive assembly becomes negative.
2-9. Installing Gas Supply
Ref. ST-148 265-B / ST-802 028
Tools Needed:
Obtain gas cylinder and chain to
running gear, wall, or other station-
ary support so cylinder cannot fall
and break off valve.
1 Cap
2 Cylinder Valve
Remove cap, stand to side of
valve, and open valve slightly. Gas
flow blows dust and dirt from valve.
Close valve.
3 Cylinder
4 Regulator/Flowmeter
Install so face is vertical.
5 Regulator/Flowmeter Gas
Hose Connection
6 Welding Power Source Gas
Hose Connection
Connect customer supplied gas
hose between regulator/flowmeter
gas hose connection, and fitting on
rear of welding power source.
7 Flow Adjust
Typical flow rate is 20 cfh (cubic
feet per hour). Check wire man-
ufacturers recommended flow
rate.
8CO
2
Adapter (Customer Sup-
plied)
9 O-Ring (Customer Supplied)
Install adapter with O-ring between
regulator/flowmeter and CO
2
cylinder.
1-1/8, 5/8 in
CO
2
Gas
8 9
3
1
2
4
5
7
1
2
3
Argon Gas
OR
6
OM-198 683 Page 13
2-10. Installing Wire Spool and Adjusting Hub Tension
ST-072573-B
When a slight force is needed to turn spool, tension is set.
15/16 in
Use compression spring with
8 in (200 mm) spools.
Tools Needed:
2-11. Positioning Jumper Links
802 476-A
Check input voltage available at
site.
1 Jumper Links Access Door
Open door.
2 Jumper Link Label
Check label only one is on unit.
3 Input Voltage Jumper Links
Move jumper links to match input
voltage.
Close and secure access door.
3
Tools Needed:
2
1
230 VOLTS
460 VOLTS
575 VOLTS
S-144 916-A
3/8 in
200 VOLTS
230 VOLTS
S-153 980
OM-198 683 Page 14
2-12. Electrical Service Guide
Input Voltage 200 230 400 460 575
Input Amperes At Rated Output 48 42 24 21 17
Max Recommended Standard Fuse Or Circuit Breaker Rating In Amperes
Circuit Breaker
1
, Time-Delay
2
60 50 30 25 20
Normal Operating
3
70 60 35 30 25
Min Input Conductor Size In AWG/Kcmil 8 8 12 12 14
Max Recommended Input Conductor Length In Feet (Meters)
96
(29)
127
(39)
156
(47)
206
(63)
209
(64)
Min Grounding Conductor Size In AWG/Kcmil 8 10 12 12 14
Reference: 1999 National Electrical Code (NEC)
1 Choose a circuit breaker with time-current curves comparable to a Time Delay Fuse.
2 Time-Delay fuses are UL class RK5 .
3 Normal Operating (general purpose no intentional delay) fuses are UL class K5 (up to and including 60 amp), and UL class H ( 65 amp and
above).
Y Caution: Failure to follow these fuse and circuit breaker recommendations could create an electric shock or fire hazard.
2-13. Selecting A Location And Connecting Input Power
1 Rating Label
Supply correct input power.
2 Plug (NEMA Type 6-50P)
3 Receptacle
(NEMA Type 6-50R)
Connect plug to receptacle.
4 Input And Grounding
Conductors
Connect directly to line disconnect
device if hard wiring is required.
5 Line Disconnect Device
See Section 2-12.
Y Special installation may be
required where gasoline or
volatile liquids are present
see NEC Article 511 or CEC
Section 20.
802 477
L1L2
230 VAC, 1
18 in (457 mm) of
space for airflow
L1
L2
Y Do not move or operate unit
where it could tip.
Y Always connect
grounding conductor first.
= GND/PE
3
2
5
1
4
OM-198 683 Page 15
2-14. Threading Welding Wire
1 Wire Spool
2 Welding Wire
3 Inlet Wire Guide
4 Pressure Adjustment Knob
5 Drive Roll
6 Outlet Wire Guide
7 Gun Conduit Cable
Lay gun cable out straight.
4
7
35
621
Tools Needed:
6 in
(150 mm)
. Hold wire tightly to keep it
from unraveling.
WOOD
Open pressure assembly. Pull and hold wire; cut off end. Push wire thru guides into gun;
continue to hold wire.
Close and tighten pressure
assembly, and let go of wire.
Remove gun nozzle and contact tip. Turn On.
Press gun trigger until wire
comes out of gun. Reinstall
contact tip and nozzle
Feed wire to check drive roll pressure.
Tighten knob enough to prevent slipping.
Cut off wire. Close
and latch door.
Ref. 802 064-A / S-0627-A
Tighten
1
2
3
4
. Use pressure indicator
scale to set a desired
drive roll pressure.
Pressure
Indicator
Scale
Tighten
1
2
3
4
OM-198 683 Page 18
SECTION 3 OPERATION
3-1. Controls
1 Voltage Control
Turn control clockwise to increase
voltage.
2 Wire Speed Control
Turn control clockwise to increase
wire feed speed.
3 Power Switch
4 Voltmeter
5 Wire Feed Speed Meter
1
2
3
4
5
198 653
OM-198 683 Page 19
3-2. Voltmeter And Wire Feed Speed Meter Operation
1 Voltmeter
2 Wire Feed Speed Meter
Power Up Status
Both meters display zeros at unit
power up. After one second, preset
values appear on both meters. The
MIG gun settings (not spool gun)
are always the default at initial
power up of the unit.
Welding Status
When either a MIG gun or spool gun
trigger is pressed and a welding arc
is established, the voltmeter
displays actual weld voltage. When
the gun trigger is released and
welding arc extinguished, the
voltmeter displays the last actual
voltage for 5 seconds and then
returns to preset voltage. If welding
resumes before unit displays
preset voltage, actual welding
voltage will appear on the voltmeter.
The wire feed speed meter always
displays preset wire feed speed
(IPM).
Gun Selection
The wire feed speed meter will
display preset wire feed speed
(IPM) for the appropriate gun
selection either MIG or spool gun.
To preset desired wire feed speed,
connect desired gun, press gun
trigger for one second, and release
trigger. The meter preset will be
retained by the meter board until a
different gun is connected and
preset is performed or the unit is
turned off and back on. The MIG
gun settings (not spool gun) are
always the default at initial power up
of the unit.
Error Message
If the rectifier thermostat opens, the
voltmeter will display (H ) and the
wire feed speed meter will display
( ). During this overheated
condition, the unit is inoperative and
the meters retain their display until
the rectifier returns to normal
operating temperature.
1
2
OM-198 683 Page 20
SECTION 4 MAINTENANCE &TROUBLESHOOTING
4-1. Routine Maintenance
Y Disconnect power
before maintaining.
. Maintain more often
during severe conditions.
3 Months
Replace unreadable labels
Repair or replace
cracked weld cable
Clean and tighten weld terminals
6 Months
Blow out or vacuum inside.
OR
Remove drive roll and
carrier. Apply light coat
of oil or grease to drive
motor shaft.
4-2. Circuit Breaker CB1
1 Circuit Breaker CB1
If CB1 opens, wire feeding stops.
2 Circuit Breaker CB2
Overcurrent at pin D of receptacle
RC7 will cause CB2 to open.
3 Welding Gun
Check gun liner for blockage or
kinks.
4 Wire Drive Assembly
Check for jammed wire, binding
drive gear or misaligned drive rolls.
Allow cooling period and reset
breaker. Close door.
3
802 475-A / Ref. 800 797-C
4
1
2
4-3. Unit Overload
Thermostat TP1 in rectifier Z1 protects the unit from damage due to overheating. If TP1 opens, wait several minutes
before trying to weld.
OM-198 683 Page 21
4-4. Replacing Gun Contact Tip
Ref. 800 797-C
Y Turn Off power.
1 Nozzle
2 Contact Tip
Cut off welding wire at contact tip.
Remove nozzle.
Remove contact tip and install new
contact tip. Reinstall nozzle.
Tools Needed:
1
2
4-5. Changing Drive Roll and Wire Inlet Guide
1 Securing Screw
2 Inlet Wire Guide
Loosen screw. Slide tip as close to
drive rolls as possible without
touching. Tighten screw.
3 Anti-Wear Guide
Install guide as shown.
4 Drive Roll
Install correct drive roll for wire size
and type.
5 Drive Roll Securing Nut
Turn nut one click to secure drive
roll.
1
3
2
4
5
Tools Needed:
5/64 in
7/16 in
ST-150 227-D
OM-198 683 Page 22
4-6. Aligning Drive Rolls and Wire Guide
Y Turn Off power.
View is from top of drive rolls look-
ing down with pressure assembly
open.
1 Drive Roll Securing Nut
2 Drive Roll
3 Wire Guide
4 Welding Wire
5 Drive Gear
Insert screwdriver, and turn screw
in or out until drive roll groove lines
up with wire guide.
Close pressure roll assembly.
Ref. ST-800 412-A
Correct Incorrect
4
3
2
1
5
Tools Needed:
/