Texas Instruments THS3001 SPICE Model Performance Application Note

  • Hello! I am an AI chatbot trained to assist you with the Texas Instruments THS3001 SPICE Model Performance Application Note. I’ve already reviewed the document and can help you find the information you need or explain it in simple terms. Just ask your questions, and providing more details will help me assist you more effectively!
Application Report
SLOA038 - October 1999
1
THS3001 SPICE Model Performance
Jim Karki Mixed Signal Products
ABSTRACT
This application report outlines the SPICE model of the THS3001 high-speed monolithic operational
amplifier. General information about the model file structure, performance comparison, model listing,
and a brief comment about symbols are included. The listing can be copied and pasted into an ASCII
editor, or it can be down loaded by visiting the THS3001 product folder at
http://www.ti.com/sc/docs/products/analog/THS3001.html.
Contents
1 Introduction 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 File Structure 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Performance 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Schematic and Subcircuit Listing 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 About Building a Symbol 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List of Figures
1 Output Voltage (pk) vs Temperature 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Output Voltage (pk) vs Temperature 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Supply Current vs Temperature 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Supply Current vs Temperature 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Bias Current vs Temperature 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 Bias Curent vs Temperature 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 Input Offset Voltage vs Temperature 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 Input Offset Voltage vs Temperature 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9 Common-Mode Rejection Ratio vs Frequency 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10 Common-Mode Rejection Ratio vs Frequency 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11 Power Supply Rejection Ratio vs Frequency 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12 Power Supply Rejection Ratio vs Frequency 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13 Equivalent Input Voltage Noise vs Frequency 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14 Equivalent Input Current Noise vs Frequency 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15 Slew Rate vs Output Voltage (pp) 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16 Slew Rate vs Output Voltage (pp) 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17 2nd Harmonic vs Frequency 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18 2nd Harmonic vs Frequency 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19 3rd Harmonic vs Frequency 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20 3rd Harmonic vs Frequency 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SLOA038
2
THS3001 SPICE Model Performance
21 Differential Gain vs Loads 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22 Differential Phase vs Loads 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23 Differential Gain vs Loads 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24 Differential Phase vs Loads 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25 Differential Gain vs Loads 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
26 Differential Phase vs Loads 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
27 Differential Gain vs Loads 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
28 Differential Phase vs Loads 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29 Closed-Loop Gain vs Frequency 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30 Closed-Loop Gain vs Frequency 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31 Closed-Loop Gain vs Frequency 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32 Closed-Loop Gain vs Frequency 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33 Closed-Loop Gain vs Frequency 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34 Closed-Loop Gain vs Frequency 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35 Output Impedance vs Frequency 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
36 Output Voltage vs Time 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
37 Gain and Phase vs Frequency 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
38 Open Loop Transimpedance Gain vs Frequency 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
39 Open Loop Transimpedance Gain vs Frequency 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
40 THS3001 SPICE Model Schematic 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List of Tables
1 Subcircuit Node to Symbol Pin Summary 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SLOA038
3
THS3001 SPICE Model Performance
1 Introduction
SPICE modeling has become commonplace today, especially with the advent of affordable PCs
with more computing power than main frames of a few years ago.
A big concern in SPICE modeling is the accuracy of the models. Without a good model,
simulation results are little more than verification of rudimentary circuit operation. The Boyle
operational amplifier (op amp) model introduced during the mid ‘70s came from the need for a
model that did not use a lot of computing resources, and gave reasonable results for the µA741.
In the years since, people have enhanced the Boyle model to add more accuracy.
Today, full-transistor models simulate with speed and accuracy on modest home systems. The
goal, when creating the SPICE model of the THS3001 high-speed monolithic operational
amplifier, is to provide a model that will accurately simulate the actual device in a circuit. The
model is derived from the full-transistor model used internally by TI design. Simplifications are
made to speed simulation time, and various performance parameters are adjusted to match the
model to measured device performance.
2 File Structure
The THS3001 SPICE model file, THS3001.lib, is written in ASCII file format and is compatible
with a wide variety of computing platforms. The model is written in subcircuit format and has
been tested with MicroSim PSpice release 8 and OrCAD PSpice version 9. It should be
compatible with most SPICE2- and SPICE3-based simulation programs.
The THS3001.lib file contains the subcircuit definition for the THS3001. The model begins with a
.SUBCKT statement and ends with a .ENDS statement.
3 Performance
Typical performance parameters are modeled, and normal part-to-part variations experienced in
real life cannot be expected. At frequencies above a few hundred MHz, performance becomes
increasingly dependent on parasitic devices associated with the circuit, and modeling suffers.
So, even though the model is very accurate, always verify circuit performance with lab testing.
An EVM is available upon request.
The following graphs compare simulation results to measured device data. In all graphs, the
simulation results are dashed lines and the measured data are solid lines. Device performance
is measured using the THS3001 EVM, or is taken from the data sheet. SPICE simulation was
done using MicroSim PSpice release 8. Most of the parameters are measured using
Vcc=±15 V, and performance follows at lower voltages.
SLOA038
4
THS3001 SPICE Model Performance
T – Temperature – °C
12.8
12.4
–40 –20 0 20 40 60 80
– Output Voltage – V
13
13.2
13.6
100
13.4
12.6
12.2
V
O
R
L
= 1 k
R
L
= 150
G = 3, R
f
= 1 k,
V
CC
= ±15 V
–40 –20
3.2
3
02040
3.3
3.4
3.6
60 100
3.5
3.1
2.9
T – Temperature – °C
80
R
L
= 1 k
R
L
= 150
G = 3, R
f
= 1 k,
V
CC
= ±5 V
+
V
I
V
O
R
L
1 k
500
Figure 1. Output Voltage (pk) vs Temperature
Figure 2. Output Voltage (pk) vs Temperature
Measured
SPICE
– Output Voltage – VV
O
Measured
SPICE
T – Temperature – °C
5
4
2
–40 –20 0 20
– Supply Current – mA
6
7
9
60 100
8
3
1
40 80
I
CC
V
CC
= ±15 V
4
2
5
6
7
3
1
T – Temperature – °C
–40 –20 0 20
– Supply Current – mA
60 10040 80
I
CC
V
CC
= ±5 V
Figure 3. Supply Current vs Temperature
Figure 4. Supply Current vs Temperature
Measured
SPICE
Measured
SPICE
1
0.5
Bias Current –
1.5
2
2.5
0
Aµ
T – Temperature – °C
–40 –20 0 20 60 10040 80
V
CC
= ±15 V
Figure 5. Bias Current vs Temperature Figure 6. Bias Curent vs Temperature
1
0.5
1.5
2
2.5
0
Bias Current – Aµ
T – Temperature – °C
–40 –20 0 20 60 10040 80
V
CC
= ±5 V
Measured
SPICE
Measured
SPICE
SLOA038
5
THS3001 SPICE Model Performance
1
0.8
0
–40–30–20–10 10 20 30
– Input Offset Voltage – mV
1.2
1.4
1.8
40 50 70 80
1.6
0.4
–0.2
0.6
0.2
060
V
IO
T – Temperature – °C
V
CC
= ±15 V
0.1
–0.1
0.2
0.3
0.5
0.4
0
–0.2
–40–30–20–10 10 20 30
– Input Offset Voltage – mV
40 50 70 80060
V
IO
T – Temperature – °C
V
CC
= ±5 V
Figure 7. Input Offset Voltage vs Temperature Figure 8. Input Offset Voltage vs Temperature
Measured
SPICE
Measured
SPICE
f – Frequency – Hz
40
30
10
CMRR – Common-Mode Rejection Ratio – dB
50
60
80
70
20
0
10
1
10
2
10
3
10
4
10
5
10
6
10
7
10
8
V
CC
= ±15 V
f – Frequency – Hz
40
30
10
CMRR – Common-Mode Rejection Ratio – dB
50
60
80
70
20
0
10
1
10
2
10
3
10
4
10
5
10
6
10
7
10
8
V
CC
= ±5 V
+
V
I
V
O
1 k
1 k
1 k
1 k
Figure 9. Common-Mode Rejection Ratio vs Frequency
Figure 10. Common-Mode Rejection Ratio vs Frequency
Measured
SPICE
Measured
SPICE
SLOA038
6
THS3001 SPICE Model Performance
40
30
10
PSRR – Power Supply Rejection Ratio – dB
50
60
80
70
20
0
10
3
10
4
10
5
10
6
10
7
10
8
f – Frequency – Hz
V
CC
= ±15 V
+
V
I
V
O
1 k
1 k
1 k
1 k
V
CC
Figure 11. Power Supply Rejection Ratio vs Frequency
Measured
SPICE
40
30
10
50
60
90
70
20
0
80
PSRR – Power Supply Rejection Ratio – dB
10
3
10
4
10
5
10
6
10
7
10
8
f – Frequency – Hz
V
CC
= ±5 V
+
V
I
V
O
1 k
1 k
1 k
1 k
V
CC
Figure 12. Power Supply Rejection Ratio vs Frequency
Measured
SPICE
Equivalent Input Voltqge Noise –
10
10
1
10
2
10
3
10
4
10
5
1
nV/rt Hz
f – Frequency – Hz
V
CC
= ±15 V
Figure 13. Equivalent Input Voltage Noise
vs Frequency
Measured
SPICE
10
100
1000
1
Equivalent Input Current Noise –
10
1
10
2
10
3
10
4
10
5
pA/rt Hz
f – Frequency – Hz
V
CC
= ±15 V
Figure 14. Equivalent Input Current Noise vs Frequency
Measured
SPICE
SLOA038
7
THS3001 SPICE Model Performance
1000
0 123
Slew Rate –
10000
45
100
sµ
V/
V
O
– Output Voltage (pp) – V
V
CC
= ±5 V
_
+
V
I
V
O
1 k
250
150
Figure 15. Slew Rate vs Output Voltage (pp)
Measured
SPICE
1000
0510
10000
15 20
100
Slew Rate –
sµ
V/
V
O
– Output Voltage (pp) – V
V
CC
= ±15 V
_
+
V
I
V
O
1 k
250
150
Figure 16. Slew Rate vs Output Voltage (pp)
Measured
SPICE
–90
Harmonic – dBc
–80
–70
–100
–110
10
6
10
7
f – Frequency – Hz
V
CC
= ±5 V
+
V
I
V
O
= 2V
pp
750
750
150
Figure 17. 2nd Harmonic vs Frequency
Measured
SPICE
+
V
I
V
O
= 2V
pp
750
750
150
–100
–90
–80
–110
–120
Harmonic – dBc
10
6
10
7
f – Frequency – Hz
V
CC
= ±15 V
Figure 18. 2nd Harmonic vs Frequency
Measured
SPICE
SLOA038
8
THS3001 SPICE Model Performance
Figure 19. 3rd Harmonic vs Frequency
–85
–90
–95
–80
–70
–75
–100
Harmonic – dBc
10
6
10
7
f – Frequency – Hz
V
CC
= ±5 V
+
V
I
V
O
= 2V
pp
750
750
150
Measured
SPICE
–100
–90
–80
–110
–120
Harmonic – dBc
10
6
10
7
f – Frequency – Hz
V
CC
= ±15 V
+
V
I
V
O
= 2V
pp
750
750
150
Figure 20. 3rd Harmonic vs Frequency
Measured
SPICE
150 Loads
0.010
0.005
12345
Differential Gain – %
0.015
0.025
678
0.020
0
3.58 MHz,
V
CC
= ±5 V
Figure 21. Differential Gain vs Loads
Measured
SPICE
150 Loads
0.2
1234
Differential Phase – deg
0.3
0.4
5678
0.1
0
3.58 MHz,
V
CC
= ±5 V
Figure 22. Differential Phase vs Loads
Measured
SPICE
0.020
0.015
0.005
12345
0.025
0.030
0.040
678
0.035
0.010
0
150 Loads
Differential Gain – %
3.58 MHz,
V
CC
= ±15 V
Figure 23. Differential Gain vs Loads
Measured
SPICE
0.2
12345
0.3
0.4
678
0.1
0
150 Loads
Differential Phase – deg
3.58 MHz,
V
CC
= ±15 V
Figure 24. Differential Phase vs Loads
Measured
SPICE
SLOA038
9
THS3001 SPICE Model Performance
0.025
0.015
0.010
0.030
0.045
0.040
0
150 Loads
12345
Differential Gain – %
678
4.43 MHz,
V
CC
= ±5 V
Figure 25. Differential Gain vs Loads
Measured
SPICE
0.035
0.020
0.005
0.2
12345
0.3
0.5
678
0.4
0.1
0
150 Loads
Differential Phase – deg
4.43 MHz,
V
CC
= ±5 V
Figure 26. Differential Phase vs Loads
Measured
SPICE
R
L
Figure 27. Differential Gain vs Loads
0.020
0.015
0.005
0.025
0.030
0.045
0.040
0.010
0
0.035
150 Loads
12345
Differential Gain – %
678
4.43 MHz,
V
CC
= ±15 V
+
V
I
V
O
750
750
Measured
SPICE
R
L
0.2
0.3
0.4
0.1
0
123 4567 8
150 Loads
Differential Phase – deg
4.43 MHz,
V
CC
= ±15 V
+
V
I
V
O
750
750
Figure 28. Differential Phase vs Loads
Measured
SPICE
Figure 29. Closed-Loop Gain vs Frequency
–1
–2
–5
ACL – Closed-Loop Gain – dB
0
1
3
2
–4
–6
–3
10
5
10
6
10
7
10
8
10
9
f – Frequency – Hz
G = 1,
V
CC
= ±5 V
+
V
I
V
O
R
f
150
Measured
SPICE
R
f
= 750
R
f
= 1 k
R
f
= 1.5 k
–1
–2
–5
ACL – Closed-Loop Gain – dB
0
1
3
2
–4
–6
–3
10
5
10
6
10
7
10
8
10
9
f – Frequency – Hz
G = 1,
V
CC
= ±15 V
+
V
I
V
O
R
f
150
Figure 30. Closed-Loop Gain vs Frequency
Measured
SPICE
R
f
= 750
R
f
= 1 k
R
f
= 1.5 k
SLOA038
10
THS3001 SPICE Model Performance
R
L
Figure 31. Closed-Loop Gain vs Frequency
4
2
0
5
6
9
8
1
–1
3
7
ACL – Closed-Loop Gain – dB
10
5
10
6
10
7
10
8
10
9
f – Frequency – Hz
G = 2,
V
CC
= ±5 V
+
V
I
V
O
R
f
R
f
Measured
SPICE
R
f
= 560
R
f
= 750
R
f
= 1 k
R
L
4
2
0
5
6
9
8
1
–1
3
7
ACL – Closed-Loop Gain – dB
10
5
10
6
10
7
10
8
10
9
f – Frequency – Hz
G = 2,
V
CC
= ±15 V
+
V
I
V
O
R
f
R
f
Figure 32. Closed-Loop Gain vs Frequency
Measured
SPICE
R
f
= 560
R
f
= 680
R
f
= 1 k
R
L
Figure 33. Closed-Loop Gain vs Frequency
10
9
6
12
14
17
15
7
5
8
11
13
16
ACL – Closed-Loop Gain – dB
10
5
10
6
10
7
10
8
10
9
f – Frequency – Hz
G = 5,
V
CC
= ±5 V
+
V
I
V
O
R
f
R
f
4
Measured
SPICE
R
f
= 390
R
f
= 620
R
f
= 1 k
R
L
10
9
6
12
14
17
15
7
5
8
11
13
16
ACL – Closed-Loop Gain – dB
10
5
10
6
10
7
10
8
10
9
f – Frequency – Hz
G = 5,
V
CC
= ±15 V
+
V
I
V
O
R
f
R
f
4
Figure 34. Closed-Loop Gain vs Frequency
Measured
SPICE
R
f
= 390
R
f
= 560
R
f
= 1 k
0.1
– Output Impedance –
1
100
0.01
0.001
10
10
5
10
6
10
7
10
8
10
9
Z
O
f – Frequency – Hz
V
CC
= ±15 V
+
V
I
V
O
1 k
50
Figure 35. Output Impedance vs Frequency
Measured
SPICE
SLOA038
11
THS3001 SPICE Model Performance
t – Time – ns
–1
–5
–13
3
7
15
11
–11
–15
–9
–7
–3
1
5
9
13
010203040
OUTPUT VOLTAGE
vs
TIME
50 60 70 80
– Output Voltage – VV
O
G = 4.9, R
f
= 390 ,
R
L
= 150 , V
CC
= ±15 V
+
V
I
V
O
150
390
100
Figure 36. Output Voltage vs Time Figure 37. Gain and Phase vs Frequency
Phase
Gain
f – Frequency – Hz
–30
–40
–60
Gain – dB
–20
–10
GAIN AND PHASE
vs
FREQUENCY
10
0
–50
–70
–200
–250
–350
–150
–100
0
–50
–300
–400
Phase – deg
10
4
10
5
10
6
10
7
10
8
10
9
Bessel, F
c
= 159 kHz,
R = 1 k, C = 1 nF,
K = 1, R
f
= 1 k, V
CC
= ±15 V
+
V
I
V
O
1 k
1 k
1 k
1 nF
1 nF
Measured
SPICE
Measured
SPICE
f – Frequency – Hz
80
70
40
Gain – dB
100
110
140
120
50
30
60
90
130
10
2
10
3
10
4
10
5
10
6
10
7
10
8
10
9
V
CC
= ±15 V
Figure 38. Open Loop Transimpedance Gain
vs Frequency
Figure 39. Open Loop Transimpedance Gain
vs Frequency
–120
–160
–220
Phase – deg
–100
–60
20
–20
–180
–240
–200
–140
–80
–40
0
f – Frequency – Hz
10
2
10
3
10
4
10
5
10
6
10
7
10
8
10
9
V
CC
= ±15 V
Measured
SPICE
Measured
SPICE
SLOA038
12
THS3001 SPICE Model Performance
4 Schematic and Subcircuit Listing
The schematic representation of the model and the subcircuit listing follow.
Figure 40. THS3001 SPICE Model Schematic
SLOA038
13
THS3001 SPICE Model Performance
* [Disclaimer] (C) Copyright Texas Instruments Incorporated 1999 All rights reserved
* Texas Instruments Incorporated hereby grants the user of this SPICE Macro–model a
* non–exclusive, nontransferable license to use this SPICE Macro–model under the following
* terms. Before using this SPICE Macro–model, the user should read this license. If the
* user does not accept these terms, the SPICE Macro–model should be returned to Texas
* Instruments within 30 days. The user is granted this license only to use the SPICE
* Macro–model and is not granted rights to sell, load, rent, lease or license the SPICE
* Macro–model in whole or in part, or in modified form to anyone other than user. User may
* modify the SPICE Macro–model to suit its specific applications but rights to derivative
* works and such modifications shall belong to Texas Instruments. This SPICE Macro–model is
* provided on an ”AS IS” basis and Texas Instruments makes absolutely no warranty with
* respect to the information contained herein. TEXAS INSTRUMENTS DISCLAIMS AND CUSTOMER
* WAIVES ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY OR
* FITNESS FOR A PARTICULAR PURPOSE. The entire risk as to quality and performance is with
* the Customer. ACCORDINGLY, IN NO EVENT SHALL THE COMPANY BE LIABLE FOR ANY DAMAGES,
* WHETHER IN CONTRACT OR TORT,INCLUDING ANY LOST PROFITS OR OTHER INCIDENTAL, CONSEQUENTIAL,
* EXEMPLARY, OR PUNITIVE DAMAGES ARISING OUT OF THE USE OR APPLICATION OF THE SPICE
* Macro–model provided in this package. Further, Texas Instruments reserves the right to
* discontinue or make changes without notice to any product herein to improve reliability,
* function, or design. Texas Instruments does not convey any license under patent rights or
* any other intellectual property rights, including those of third parties.
*
* THS3001 SUBCIRCUIT
* HIGH SPEED, CURRENT FEEDBACK, OPERATIONAL AMPLIFIER
* WRITTEN 8/10/99
* TEMPLATE=X^@REFDES %IN+ %IN– %Vcc+ %Vcc– %OUT @MODEL
* CONNECTIONS: NON–INVERTING INPUT
* | INVERTING INPUT
* | | POSITIVE POWER SUPPLY
* | | | NEGATIVE POWER SUPPLY
* | | | | OUTPUT
* | | | | |
* | | | | |
* | | | | |
.SUBCKT THS3001 1 2 3 4 5
*
* INPUT *
Q1 31 32 2 NPN_IN 4
QD1 32 32 1 NPN 4
Q2 7 15 2 PNP_IN 4
QD2 15 15 1 PNP 4
* PROTECTION DIODES *
D1 1 3 Din_N
D2 4 1 Din_P
D3 5 3 Dout_N
D4 4 5 Dout_P
* SECOND STAGE *
Q3 17 31 11 PNP 2
Q4 16 7 13 NPN 2
QD3 30 30 17 PNP 3
SLOA038
14
THS3001 SPICE Model Performance
QD4 30 30 16 NPN 3
C1 30 3 0.4p
C2 4 30 0.4p
F1 3 31 VF1 1
VF1 33 34 0V
F2 7 4 VF2 1
VF2 35 6 0V
F3 3 12 VF3 1
VF3 34 11 0V
F4 14 4 VF4 1
VF4 13 35 0V
* FREQUENCY SHAPING *
E1 18 0 17 0 1
E2 19 0 16 0 1
R1 44 18 25
R2 19 42 25
C3 0 14 9p
C4 0 12 9p
L1 44 14 2.8n
L2 42 12 2.8n
* OUTPUT *
Q5 3 14 28 NPN 128
Q6 4 12 29 PNP 128
C5 28 9 7p
R5 9 5 100
L3 28 10 30n
R7 10 5 8
Re 28 29 Rt 50
C6 29 21 7p
R4 21 5 100
L4 29 22 30n
R6 22 5 8
* BIAS SOURCES *
G1 3 32 VALUE = { 308e–6+1.656e–6*V(3, 4) }
G2 15 4 VALUE = { 307e–6+1.656e–6*V(3, 4) }
V1 3 33 0.83
V2 6 4 0.83
.MODEL Rt RES TC1=–0.006
* DIODE MODELS *
.MODEL Din_N D IS=10E–21 N=1.836 ISR=1.565e–9 IKF=1e–4 BV=30 IBV=100E–6 RS=105 TT=11.54E–9
CJO=2E–12 VJ=.5 M=.3333
.MODEL Din_P D IS=10E–21 N=1.836 ISR=1.565e–9 IKF=1e–4 BV=30 IBV=100E–6 RS=160 TT=11.54E–9
CJO=2E–12 VJ=.5 M=.3333
.MODEL Dout_N D IS=10E–21 N=1.836 ISR=1.565e–9 IKF=1e–4 BV=30 IBV=100E–6 RS=60 TT=11.54E–9
CJO=2E–12 VJ=.5 M=.3333
.MODEL Dout_P D IS=10E–21 N=1.836 ISR=1.565e–9 IKF=1e–4 BV=30 IBV=100E–6 RS=105 TT=11.54E–9
CJO=2E–12 VJ=.5 M=.3333
* TRANSISTOR MODELS *
.MODEL NPN_IN NPN
+ IS=170E–18 BF=100 NF=1 VAF=100 IKF=0.0389 ISE=7.6E–18
SLOA038
15
THS3001 SPICE Model Performance
+ NE=1.13489 BR=1.11868 NR=1 VAR=4.46837 IKR=8 ISC=8E–15
+ NC=1.8 RB=251.6 RE=0.1220 RC=197 CJE=120.2E–15 VJE=1.0888 MJE=0.381406
+ VJC=0.589703 MJC=0.265838 FC=0.1 CJC=133.8E–15 XTF=272.204 TF=12.13E–12
+ VTF=10 ITF=0.294 TR=3E–09 XTB=1 XTI=5 KF=25E–15
.MODEL NPN NPN
+ IS=170E–18 BF=100 NF=1 VAF=100 IKF=0.0389 ISE=7.6E–18
+ NE=1.13489 BR=1.11868 NR=1 VAR=4.46837 IKR=8 ISC=8E–15
+ NC=1.8 RB=251.6 RE=0.1220 RC=197 CJE=120.2E–15 VJE=1.0888 MJE=0.381406
+ VJC=0.589703 MJC=0.265838 FC=0.1 CJC=133.8E–15 XTF=272.204 TF=12.13E–12
+ VTF=10 ITF=0.147 TR=3E–09 XTB=1 XTI=5
.MODEL PNP_IN PNP
+ IS=296E–18 BF=100 NF=1 VAF=100 IKF=0.021 ISE=494E–18
+ NE=1.49168 BR=0.491925 NR=1 VAR=2.35634 IKR=8 ISC=8E–15
+ NC=1.8 RB=251.6 RE=0.1220 RC=197 CJE=120.2E–15 VJE=0.940007 MJE=0.55
+ VJC=0.588526 MJC=0.55 FC=0.1 CJC=133.8E–15 XTF=141.135 TF=12.13E–12
+ VTF=6.82756 ITF=0.267 TR=3E–09 XTB=1 XTI=5 KF=25E–15
.MODEL PNP PNP
+ IS=296E–18 BF=100 NF=1 VAF=100 IKF=0.021 ISE=494E–18
+ NE=1.49168 BR=0.491925 NR=1 VAR=2.35634 IKR=8 ISC=8E–15
+ NC=1.8 RB=251.6 RE=0.1220 RC=197 CJE=120.2E–15 VJE=0.940007 MJE=0.55
+ VJC=0.588526 MJC=0.55 FC=0.1 CJC=133.8E–15 XTF=141.135 TF=12.13E–12
+ VTF=6.82756 ITF=0.267 TR=3E–09 XTB=1 XTI=5
.ENDS
*$
5 About Building a Symbol
The first line of the subcircuit definition – .SUBCKT THS3001_NN 1 2 3 4 5 – defines the name
of the model and the subcircuit nodes available for external connection. When creating a symbol
in PSpice, the subcircuit node assignments need to match the TEMPLATE device property,
and the MODEL value must equal the model name. The comment line in the file * TEMPLATE =
X^@REFDES %IN+ %IN– %VCC+ %VCC– %OUT @MODEL gives the proper value for the
TEMPLATE property. This associates the symbol pin names with subcircuit nodes available for
external connections. The symbol pin numbers are used for packaging purposes and are not
used for simulation. Using the forgoing results in the following associations:
Table 1. Subcircuit Node to Symbol Pin Summary
Subcircuit Node THS3001
Symbol Pin Name
2 IN–
3 Vcc+
4 Vcc–
5 OUT
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customers applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1999, Texas Instruments Incorporated
/