Miller LA145079 Owner's manual

Category
Welding System
Type
Owner's manual

This manual is also suitable for

Visit our website at
www.MillerWelds.com
OM-2227 197 030A
May 2000
Processes
Description
Arc Welding Power Source
Deltaship 502
R
MIG (GMAW) Welding
Flux Cored (FCAW) Welding
Miller Electric manufactures a full line
of welders and welding related equipment.
For information on other quality Miller
products, contact your local Miller distributor
to receive the latest full line catalog or
individual catalog sheets. To locate your nearest
distributor or service agency call 1-800-4-A-Miller,
or visit us at www.MillerWelds.com on the web.
Thank you and congratulations on choosing Miller. Now
you can get the job done and get it done right. We know
you don’t have time to do it any other way.
That’s why when Niels Miller first started building arc
welders in 1929, he made sure his products offered
long-lasting value and superior quality. Like you, his
customers couldn’t afford anything less. Miller products
had to be more than the best they could be. They had to
be the best you could buy.
Today, the people that build and sell Miller products continue the
tradition. They’re just as committed to providing equipment and service
that meets the high standards of quality and value established in 1929.
This Owners Manual is designed to help you get the most out of your
Miller products. Please take time to read the Safety precautions. They will
help you protect yourself against potential hazards on the worksite. We’ve
made installation and operation quick and easy.
With Miller you can count on years of reliable
service with proper maintenance. And if for
some reason the unit needs repair, there’s a
Troubleshooting section that will help you
figure out what the problem is. The parts list
will then help you to decide which exact part
you may need to fix the problem. Warranty and
service information for your particular model
are also provided.
Miller is the first welding
equipment manufacturer in
the U.S.A. to be registered to
the ISO 9001 Quality System
Standard.
Working as hard as you do
every power source from
Miller is backed by the most
hassle-free warranty in the
business.
From Miller to You
Miller offers a Technical
Manual which provides
more detailed service and
parts information for your
unit. To obtain a Technical
Manual, contact your local
distributor. Your distributor
can also supply you with
Welding Process Manuals
such as SMAW, GTAW,
GMAW, and GMAW-P.
The following terms are
used interchangeably
throughout this manual:
MIG = GMAW
TABLE OF CONTENTS
SECTION 1 SAFETY PRECAUTIONS - READ BEFORE USING 1. . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-1. Symbol Usage 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-2. Arc Welding Hazards 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-3. Additional Symbols For Installation, Operation, And Maintenance 3. . . . . . . . . . . . . . . . . . . . . .
1-4. Principal Safety Standards 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-5. EMF Information 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SECTION 2 DEFINITIONS 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-1. General Precautionary Label 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-2. Input Connection Label 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-3. Electric Shock And Airflow Label 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-4. Nameplate Safety Symbols 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SECTION 3 INSTALLATION 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-1. Specifications 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-2. Duty Cycle And Overheating 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-3. Volt-Ampere Curves 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-4. Selecting A Location 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-5. Dimensions And Weights 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-6. Tipping 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-7. 115 VAC Receptacle And Circuit Breakers 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-8. Weld Output Terminals And Selecting Cable Sizes 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-9. Inductance Selection 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-10.Remote 9 Pin Receptacle RC8 Information 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-11.Electrical Service Guide 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-12.Placing Jumper Links And Connecting Input Power 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SECTION 4 OPERATION 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-1. Welding Power Source Controls 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-2. Pendant Controls 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SECTION 5 MAINTENANCE & TROUBLESHOOTING 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-1. Routine Maintenance 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-2. Troubleshooting Table 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SECTION 6 ELECTRICAL DIAGRAM 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SECTION 7 PARTS LIST 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OM-2227 Page 1
SECTION 1 SAFETY PRECAUTIONS - READ BEFORE USING
som _nd_4/98
1-1. Symbol Usage
Means Warning! Watch Out! There are possible hazards
with this procedure! The possible hazards are shown in
the adjoining symbols.
Y Marks a special safety message.
. Means “Note”; not safety related.
This group of symbols means Warning! Watch Out! possible
ELECTRIC SHOCK, MOVING PARTS, and HOT PARTS hazards.
Consult symbols and related instructions below for necessary actions
to avoid the hazards.
1-2. Arc Welding Hazards
Y The symbols shown below are used throughout this manual to
call attention to and identify possible hazards. When you see
the symbol, watch out, and follow the related instructions to
avoid the hazard. The safety information given below is only
a summary of the more complete safety information found in
the Safety Standards listed in Section 1-4. Read and follow all
Safety Standards.
Y Only qualified persons should install, operate, maintain, and
repair this unit.
Y During operation, keep everybody, especially children, away.
ELECTRIC SHOCK can kill.
Touching live electrical parts can cause fatal shocks
or severe burns. The electrode and work circuit is
electrically live whenever the output is on. The input
power circuit and machine internal circuits are also
live when power is on. In semiautomatic or automatic wire welding, the
wire, wire reel, drive roll housing, and all metal parts touching the
welding wire are electrically live. Incorrectly installed or improperly
grounded equipment is a hazard.
D Do not touch live electrical parts.
D Wear dry, hole-free insulating gloves and body protection.
D Insulate yourself from work and ground using dry insulating mats
or covers big enough to prevent any physical contact with the work
or ground.
D Do not use AC output in damp areas, if movement is confined, or if
there is a danger of falling.
D Use AC output ONLY if required for the welding process.
D If AC output is required, use remote output control if present on
unit.
D Disconnect input power or stop engine before installing or
servicing this equipment. Lockout/tagout input power according to
OSHA 29 CFR 1910.147 (see Safety Standards).
D Properly install and ground this equipment according to its
Owner’s Manual and national, state, and local codes.
D Always verify the supply ground check and be sure that input
power cord ground wire is properly connected to ground terminal in
disconnect box or that cord plug is connected to a properly
grounded receptacle outlet.
D When making input connections, attach proper grounding conduc-
tor first double-check connections.
D Frequently inspect input power cord for damage or bare wiring
replace cord immediately if damaged bare wiring can kill.
D Turn off all equipment when not in use.
D Do not use worn, damaged, undersized, or poorly spliced cables.
D Do not drape cables over your body.
D If earth grounding of the workpiece is required, ground it directly
with a separate cable.
D Do not touch electrode if you are in contact with the work, ground,
or another electrode from a different machine.
D Use only well-maintained equipment. Repair or replace damaged
parts at once. Maintain unit according to manual.
D Wear a safety harness if working above floor level.
D Keep all panels and covers securely in place.
D Clamp work cable with good metal-to-metal contact to workpiece
or worktable as near the weld as practical.
D Insulate work clamp when not connected to workpiece to prevent
contact with any metal object.
D Do not connect more than one electrode or work cable to any
single weld output terminal.
SIGNIFICANT DC VOLTAGE exists after removal of
input power on inverters.
D Turn Off inverter, disconnect input power, and discharge input
capacitors according to instructions in Maintenance Section
before touching any parts.
Welding produces fumes and gases. Breathing
these fumes and gases can be hazardous to your
health.
FUMES AND GASES can be hazardous.
D Keep your head out of the fumes. Do not breathe the fumes.
D If inside, ventilate the area and/or use exhaust at the arc to remove
welding fumes and gases.
D If ventilation is poor, use an approved air-supplied respirator.
D Read the Material Safety Data Sheets (MSDSs) and the
manufacturer’s instructions for metals, consumables, coatings,
cleaners, and degreasers.
D Work in a confined space only if it is well ventilated, or while
wearing an air-supplied respirator. Always have a trained watch-
person nearby. Welding fumes and gases can displace air and
lower the oxygen level causing injury or death. Be sure the breath-
ing air is safe.
D Do not weld in locations near degreasing, cleaning, or spraying op-
erations. The heat and rays of the arc can react with vapors to form
highly toxic and irritating gases.
D Do not weld on coated metals, such as galvanized, lead, or
cadmium plated steel, unless the coating is removed from the weld
area, the area is well ventilated, and if necessary, while wearing an
air-supplied respirator. The coatings and any metals containing
these elements can give off toxic fumes if welded.
OM-2227 Page 2
Arc rays from the welding process produce intense
visible and invisible (ultraviolet and infrared) rays
that can burn eyes and skin. Sparks fly off from the
weld.
ARC RAYS can burn eyes and skin.
D Wear a welding helmet fitted with a proper shade of filter to protect
your face and eyes when welding or watching (see ANSI Z49.1
and Z87.1 listed in Safety Standards).
D Wear approved safety glasses with side shields under your
helmet.
D Use protective screens or barriers to protect others from flash and
glare; warn others not to watch the arc.
D Wear protective clothing made from durable, flame-resistant mate-
rial (leather and wool) and foot protection.
Welding on closed containers, such as tanks,
drums, or pipes, can cause them to blow up. Sparks
can fly off from the welding arc. The flying sparks, hot
workpiece, and hot equipment can cause fires and
burns. Accidental contact of electrode to metal objects can cause
sparks, explosion, overheating, or fire. Check and be sure the area is
safe before doing any welding.
WELDING can cause fire or explosion.
D Protect yourself and others from flying sparks and hot metal.
D Do not weld where flying sparks can strike flammable material.
D Remove all flammables within 35 ft (10.7 m) of the welding arc. If
this is not possible, tightly cover them with approved covers.
D Be alert that welding sparks and hot materials from welding can
easily go through small cracks and openings to adjacent areas.
D Watch for fire, and keep a fire extinguisher nearby.
D Be aware that welding on a ceiling, floor, bulkhead, or partition can
cause fire on the hidden side.
D Do not weld on closed containers such as tanks, drums, or pipes,
unless they are properly prepared according to AWS F4.1 (see
Safety Standards).
D Connect work cable to the work as close to the welding area as
practical to prevent welding current from traveling long, possibly
unknown paths and causing electric shock and fire hazards.
D Do not use welder to thaw frozen pipes.
D Remove stick electrode from holder or cut off welding wire at
contact tip when not in use.
D Wear oil-free protective garments such as leather gloves, heavy
shirt, cuffless trousers, high shoes, and a cap.
D Remove any combustibles, such as a butane lighter or matches,
from your person before doing any welding.
FLYING METAL can injure eyes.
D Welding, chipping, wire brushing, and grinding
cause sparks and flying metal. As welds cool,
they can throw off slag.
D Wear approved safety glasses with side
shields even under your welding helmet.
BUILDUP OF GAS can injure or kill.
D Shut off shielding gas supply when not in use.
D Always ventilate confined spaces or use
approved air-supplied respirator.
HOT PARTS can cause severe burns.
D Do not touch hot parts bare handed.
D Allow cooling period before working on gun or
torch.
MAGNETIC FIELDS can affect pacemak-
ers.
D Pacemaker wearers keep away.
D Wearers should consult their doctor before
going near arc welding, gouging, or spot
welding operations.
NOISE can damage hearing.
Noise from some processes or equipment can
damage hearing.
D Wear approved ear protection if noise level is
high.
Shielding gas cylinders contain gas under high
pressure. If damaged, a cylinder can explode. Since
gas cylinders are normally part of the welding
process, be sure to treat them carefully.
CYLINDERS can explode if damaged.
D Protect compressed gas cylinders from excessive heat, mechani-
cal shocks, slag, open flames, sparks, and arcs.
D Install cylinders in an upright position by securing to a stationary
support or cylinder rack to prevent falling or tipping.
D Keep cylinders away from any welding or other electrical circuits.
D Never drape a welding torch over a gas cylinder.
D Never allow a welding electrode to touch any cylinder.
D Never weld on a pressurized cylinder explosion will result.
D Use only correct shielding gas cylinders, regulators, hoses, and fit-
tings designed for the specific application; maintain them and
associated parts in good condition.
D Turn face away from valve outlet when opening cylinder valve.
D Keep protective cap in place over valve except when cylinder is in
use or connected for use.
D Read and follow instructions on compressed gas cylinders,
associated equipment, and CGA publication P-1 listed in Safety
Standards.
OM-2227 Page 3
1-3. Additional Symbols For Installation, Operation, And Maintenance
FIRE OR EXPLOSION hazard.
D Do not install or place unit on, over, or near
combustible surfaces.
D Do not install unit near flammables.
D Do not overload building wiring be sure power supply system is
properly sized, rated, and protected to handle this unit.
FALLING UNIT can cause injury.
D Use lifting eye to lift unit only, NOT running
gear, gas cylinders, or any other accessories.
D Use equipment of adequate capacity to lift and
support unit.
D If using lift forks to move unit, be sure forks are
long enough to extend beyond opposite side of
unit.
OVERUSE can cause OVERHEATING
D Allow cooling period; follow rated duty cycle.
D Reduce current or reduce duty cycle before
starting to weld again.
D Do not block or filter airflow to unit.
STATIC (ESD) can damage PC boards.
D Put on grounded wrist strap BEFORE handling
boards or parts.
D Use proper static-proof bags and boxes to
store, move, or ship PC boards.
MOVING PARTS can cause injury.
D Keep away from moving parts.
D Keep away from pinch points such as drive
rolls.
WELDING WIRE can cause injury.
D Do not press gun trigger until instructed to do
so.
D Do not point gun toward any part of the body,
other people, or any metal when threading
welding wire.
MOVING PARTS can cause injury.
D Keep away from moving parts such as fans.
D Keep all doors, panels, covers, and guards
closed and securely in place.
H.F. RADIATION can cause interference.
D High-frequency (H.F.) can interfere with radio
navigation, safety services, computers, and
communications equipment.
D Have only qualified persons familiar with
electronic equipment perform this installation.
D The user is responsible for having a qualified electrician prompt-
ly correct any interference problem resulting from the installa-
tion.
D If notified by the FCC about interference, stop using the
equipment at once.
D Have the installation regularly checked and maintained.
D Keep high-frequency source doors and panels tightly shut, keep
spark gaps at correct setting, and use grounding and shielding to
minimize the possibility of interference.
ARC WELDING can cause interference.
D Electromagnetic energy can interfere with
sensitive electronic equipment such as
computers and computer-driven equipment
such as robots.
D Be sure all equipment in the welding area is
electromagnetically compatible.
D To reduce possible interference, keep weld cables as short as
possible, close together, and down low, such as on the floor.
D Locate welding operation 100 meters from any sensitive elec-
tronic equipment.
D Be sure this welding machine is installed and grounded
according to this manual.
D If interference still occurs, the user must take extra measures
such as moving the welding machine, using shielded cables,
using line filters, or shielding the work area.
1-4. Principal Safety Standards
Safety in Welding and Cutting, ANSI Standard Z49.1, from American
Welding Society, 550 N.W. LeJeune Rd, Miami FL 33126
Safety and Health Standards, OSHA 29 CFR 1910, from Superinten-
dent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.
Recommended Safe Practices for the Preparation for Welding and Cut-
ting of Containers That Have Held Hazardous Substances, American
Welding Society Standard AWS F4.1, from American Welding Society,
550 N.W. LeJeune Rd, Miami, FL 33126
National Electrical Code, NFPA Standard 70, from National Fire Protec-
tion Association, Batterymarch Park, Quincy, MA 02269.
Safe Handling of Compressed Gases in Cylinders, CGA Pamphlet P-1,
from Compressed Gas Association, 1235 Jefferson Davis Highway,
Suite 501, Arlington, VA 22202.
Code for Safety in Welding and Cutting, CSA Standard W117.2, from
Canadian Standards Association, Standards Sales, 178 Rexdale
Boulevard, Rexdale, Ontario, Canada M9W 1R3.
Safe Practices For Occupation And Educational Eye And Face
Protection, ANSI Standard Z87.1, from American National Standards
Institute, 1430 Broadway, New York, NY 10018.
Cutting And Welding Processes, NFPA Standard 51B, from National
Fire Protection Association, Batterymarch Park, Quincy, MA 02269.
OM-2227 Page 4
1-5. EMF Information
Considerations About Welding And The Effects Of Low Frequency
Electric And Magnetic Fields
Welding current, as it flows through welding cables, will cause electro-
magnetic fields. There has been and still is some concern about such
fields. However, after examining more than 500 studies spanning 17
years of research, a special blue ribbon committee of the National
Research Council concluded that: “The body of evidence, in the
committee’s judgment, has not demonstrated that exposure to power-
frequency electric and magnetic fields is a human-health hazard.”
However, studies are still going forth and evidence continues to be
examined. Until the final conclusions of the research are reached, you
may wish to minimize your exposure to electromagnetic fields when
welding or cutting.
To reduce magnetic fields in the workplace, use the following
procedures:
1. Keep cables close together by twisting or taping them.
2. Arrange cables to one side and away from the operator.
3. Do not coil or drape cables around your body.
4. Keep welding power source and cables as far away from opera-
tor as practical.
5. Connect work clamp to workpiece as close to the weld as possi-
ble.
About Pacemakers:
Pacemaker wearers consult your doctor first. If cleared by your doctor,
then following the above procedures is recommended.
OM-2227 Page 5
SECTION 2 DEFINITIONS
2-1. General Precautionary Label
Warning! Watch Out! There are
possible hazards as shown by the
symbols.
1 Electric shock from welding
electrode or wiring can kill.
1.1 Wear dry insulating gloves.
Do not touch electrode with
bare hand. Do not wear wet or
damaged gloves.
1.2 Protect yourself from electric
shock by insulating yourself
from work and ground.
1.3 Disconnect input plug or
power before working on
machine.
2 Breathing welding fumes can
be hazardous to your health.
2.1 Keep your head out of the
fumes.
2.2 Use forced ventilation or local
exhaust to remove the fumes.
2.3 Use ventilating fan to remove
fumes.
3 Welding sparks can cause
explosion or fire.
3.1 Keep flammables away from
welding. Do not weld near
flammables.
3.2 Welding sparks can cause
fires. Have a fire extinguisher
nearby, and have a
watchperson ready to use it.
3.3 Do not weld on drums or any
closed containers.
4 Arc rays can burn eyes and
injure skin.
4.1 Wear hat and safety glasses.
Use ear protection and button
shirt collar. Use welding
helmet with correct shade of
filter. Wear complete body
protection.
5 Become trained and read the
instructions before working on
the machine or welding.
6 Do not remove or paint over
(cover) the label.
1/96
S-176 254-A
1 1.1 1.2
1.3
3 3.1 3.2 3.3
4 4.1
+
2
2.1
2.2
+
+
5 6
+
2.3
OM-2227 Page 6
2-2. Input Connection Label
1 Warning! Watch Out! There
are possible hazards as
shown by the symbols.
2 Electric shock from wiring can
kill.
3 Disconnect input plug or
power before working on
machine.
4 Read the Owner’s Manual
before working on this
machine.
5 Consult rating label for input
power requirements, and
check power available at the
job site they must match.
6 Read Owner’s Manual and
inside labels for connection
points and procedures.
7 Move jumper links as shown
on inside label to match
voltage at job site.
8 Having a loop of extra length,
connect grounding conductor
first.
9 Connect line input conductors
as shown on inside label
double-check all connections,
jumper link positions, and
input voltage before applying
power.
S-179 290
1
4
5
3
2
?
V
?
A
?
V
3
1/96
1234
56 87 9
2-3. Electric Shock And Airflow Label
S-179 563
1 Warning! Watch Out! There
are possible hazards as
shown by the symbols.
2 Electric shock from wiring and
exposed weld terminals can
kill.
3 Close door before turning on
unit.
12 3
1/96
2-4. Nameplate Safety Symbols
1 Warning! Watch Out! There
are possible hazards as
shown by the symbols.
2 Electric shock from welding
electrode or wiring can kill.
3 Sparks from arcing electrode
can cause explosion or fire
disconnect cable for process
not in use.
4 Read Owner’s Manual for
connection procedures.
5 Electric shock from wiring can
kill.
6 Disconnect input power
before working on unit or
making terminal strip
connections.
Nameplate D-179 389
1
234
56
1
OM-2227 Page 7
SECTION 3 INSTALLATION
3-1. Specifications
Rated Welding
Voltage Range
Amperes Input at Rated Load Output, 50 Hz,
Three-Phase
Rated Welding
Output
Voltage Range
DC
Max OCV DC
220 V 380 V 400 V 440 V KVA KW
350 A @ 38 Volts DC,
100 % Duty Cycle
10 45 40
61
2.8*
35
1.6*
34
1.5*
31
1.4*
23.3
1.04*
17.6
0.37*
*While idling
3-2. Duty Cycle And Overheating
Duty Cycle is percentage of 10 min-
utes that unit can weld at rated load
without overheating.
If unit overheats, thermostat(s)
opens, output stops, and cooling
fan runs. Wait fifteen minutes for
unit to cool. Reduce amperage or
duty cycle before welding.
Y Exceeding duty cycle can
damage unit and void
warranty.
Overheating
0
15
V
OR
Reduce Duty Cycle
Minutes
duty1 4/95 / 197 033
60% Duty Cycle
6 Minutes Welding 4 Minutes Resting
3-3. Volt-Ampere Curves
Volt-ampere curves show
minimum and maximum voltage
and amperage output capabilities of
unit. Curves of other settings fall
between curves shown.
va_curve1 4/95 197 034-A
OM-2227 Page 8
3-4. Selecting A Location
1 Lifting Eye
2 Lifting Forks
Use lifting eye or lifting forks to
move unit.
If using lifting forks, extend forks
beyond opposite side of unit.
3 Rating Label
Use rating label to determine input
power needs. Label located under
front access door.
4 Line Disconnect Device
Locate unit near correct input
power supply.
Y Special installation may be
required where gasoline or
volatile liquids are present
see NEC Article 511 or CEC
Section 20.
3
4
18 in
(460 mm)
18 in
(460 mm)
OR
1
2
Movement
Location And Airflow
Ref. 800 453-A
3-5. Dimensions And Weights
Dimensions
C
Di
mens
i
ons
C
D
E
Height 27-1/4 in (692 mm)
E
4 Holes
Width 22-1/4 in (565 mm)
Depth 28-1/4 in (718 mm)
A 27-1/2 in (699 mm)
A
B 3/4 in (19 mm)
A
C 21 in (533 mm)
D 1-3/16 in (30 mm)
E 7/16 in (11 mm) Dia
Weight
B
Ref. 153 556-A
337 lb (153 kg)
OM-2227 Page 9
3-6. Tipping
Y Be careful when placing or
moving unit over uneven
surfaces.
3-7. 115 VAC Receptacle And Circuit Breakers
Ref. 800 452-B
Y Turn Off power before
connecting to receptacle.
1 115 V 15 A AC Receptacle
RC9
2 Circuit Breaker CB1
3 Circuit Breaker CB2
CB1 protects 115 volts ac
receptacle RC9 from overload.
CB2 protects DS-2 wire drive motor
from overload.
Press button to reset breaker.
1
3
2
OM-2227 Page 10
3-8. Weld Output Terminals And Selecting Cable Sizes
Total Cable (Copper) Length In Weld Circuit Not Exceeding
100 ft (30 m) Or Less
150 ft
(45 m)
200 ft
(60 m)
250 ft
(70 m)
300 ft
(90 m)
350 ft
(105 m)
400 ft
(120 m)
Turn Off power before
connecting to weld output
terminals.
Welding
Amperes
10 60%
Duty Cycle
60 100%
Duty Cycle
10 100% Duty Cycle
100 4 4 4 3 2 1 1/0 1/0
150 3 3 2 1 1/0 2/0 3/0 3/0
200 3 2 1 1/0 2/0 3/0 4/0 4/0
250 2 1 1/0 2/0 3/0 4/0 2-2/0 2-2/0
300 1 1/0 2/0 3/0 4/0 2-2/0 2-3/0 2-3/0
NtiP iti
+
350 1/0 2/0 3/0 4/0 2-2/0 2-3/0 2-3/0 2-4/0
NegativePositive
400 1/0 2/0 3/0 4/0 2-2/0 2-3/0 2-4/0 2-4/0
Ref. 800 452-B
500 2/0 3/0 4/0 2-2/0 2-3/0 2-4/0 3-3/0 3-3/0
*Weld cable size (AWG) is based on either a 4 volts or less drop or a current density of at least 300 circular mils per ampere. Contact your distributor for
the mm
2
equivalent weld cable sizes. S-0007-E
3-9. Inductance Selection
802 623
Y Turn Off power before
changing stabilizer taps.
Remove cover.
1 Stabilizer Z
2 Lead 25
3 Stabilizer Z Center Tap
4 Stabilizer Z Ending
5 Lead 26
Tapped stabilizer Z is factory
connected to the stabilizer end tap
which is recommended for use with
most gas-shielded flux cored wires.
Stabilizer Z controls the inductance
applied to the weld current. To de-
crease inductance for recom-
mended use with most self-
shielded flux cored wires, discon-
nect lead 26 from stabilizer end tap
and connect to stabilizer center tap
as shown.
Reinstall cover.
1
Tools Needed:
3/8, 7/16 in
3/8 in
2
5
3
4
OM-2227 Page 11
3-10. Remote 9 Pin Receptacle RC8 Information
9
Socket Socket Information
1
24 volts ac output for gas valve control when triggered or when purging
gas.
2 +15 volts dc with gun trigger open, 0 volts dc with gun trigger closed.
3 Circuit common.
4 0 to +10 volts dc input from min to max of Output Command control R1.
5 +10 volts dc output.
6 0 to +10 volts dc input from min to max of Wire Speed control R2.
2
1
6
54
3
7 +15 volts dc with Jog switch S3 open, 0 volts dc with switch closed.
6
54
98
7
8 0 to +24 volts dc output to motor M1 with respect to socket 9.
9 Voltage output to wire drive motor M1 with respect to socket 8.
3-11. Electrical Service Guide
Input Voltage 220 380 400 440
Input Amperes At Rated Output 61 35 34 31
Max Recommended Standard Fuse Rating In Amperes
1
Time-Delay
2
70 40 40 35
Normal Operating 3 90 50 50 45
Min Input Conductor Size In AWG/Kcmil 6 8 8 8
Max Recommended Input Conductor Length In Feet (Meters)
151
(46)
294
(90)
326
(99)
395
(120)
Min Grounding Conductor Size In AWG/Kcmil 8 10 10 10
Reference: 1999 National Electrical Code (NEC)
1 Consult factory for circuit breaker applications.
2 “Time-Delay” fuses are UL class “RK5” .
3 “Normal Operating” (general purpose no intentional delay) fuses are UL class “K5” (up to and including 60 amp), and UL class “H” ( 65 amp and
above).
OM-2227 Page 12
4
3-12. Placing Jumper Links And Connecting Input Power
801 382
Check input voltage available at
site.
1 Jumper Link Label
Check label.
2 Jumper Link
Move jumper links to match input
voltage, and label on unit.
3 Input And Grounding
Conductors
See Section 3-11.
4 Line Disconnect Device
See Section 3-11.
Close access door.
1
3/8, 1/2 in
= GND/PE
Y Always connect
grounding conductor first.
L1
L2
L3
3
2
OM-2227 Page 13
SECTION 4 OPERATION
4-1. Welding Power Source Controls
196 996-A
1 Analog Meters
Voltmeter and ammeter display actual output
voltage and amperage with contactor on.
2 Crater Fill Wire Speed Control
(Used With Crater Fill Mode Only)
Scale is calibrated in meters per minute.
3 Crater Fill Voltage Adjustment Control
(Used With Crater Fill Mode Only)
Turn control clockwise to increase crater fill
voltage. Control can be adjusted while welding.
4 Purge Switch
Use switch to momentarily energize gas valve
to purge gas lines, or to adjust gas regulator.
5 Mode Switch
Crater Fill On
At initial gun trigger closure and release, unit
creates and sustains a welding arc using
settings from weld controls on wire feeder
pendant. At second trigger closure, weld
parameters change to settings from crater fill
controls on welding power source. At second
trigger release, welding arc extinguishes.
Trigger Hold On
At initial gun trigger closure and release, unit
creates and sustains a welding arc using
settings from weld controls on wire feeder
pendant. At second trigger closure, welding
arc extinguishes.
Crater Fill/Trigger Hold Off
This setting is normal operation. At gun trigger
closure, unit initiates welding arc using settings
from weld controls on wire feeder pendant. At
trigger release, welding arc extinguishes.
Y Turn Off power before connecting
remote device.
6 High Temp Shutdown Light
Light turns on to indicate an overheated
condition that causes output to shutdown.
51234 6
OM-2227 Page 14
4-2. Pendant Controls
Controls are pendant mounted. An
optional remote pendant extension
cord is available.
1 Nameplates
Pendant has three nameplates
stacked one on top of the other. Each
nameplate contains the voltage and
amperage ranges for a different size
flux cored welding wire (for refer-
ence only). Unit is shipped with 1.2
mm wire nameplate on top. To
change to 1.4 or 1.6 mm name-
plates, see Wire feeder owner’s
manual.
2 Voltage Control
Use control to set welding power
source voltage at the wire feeder.
Numbers are for reference only.
3 Wire Speed Control
Use control to adjust wire feed speed
from 0 to 20 meters per minute.
. Match colored bands on voltage
and wire speed controls to get
an acceptable welding condi-
tion.
4 Jog Switch
Use Jog switch to momentarily feed
welding wire at speed set on Wire
Speed control without energizing
welding circuit or shielding gas
valve.
Ref. 802 483-A / 199 343 / 199 348 / 199 350
2
4
3
1
1
1
Use Nameplates As A Voltage
And Amperage Reference Only.
OM-2227 Page 15
SECTION 5 MAINTENANCE & TROUBLESHOOTING
5-1. Routine Maintenance
Y Disconnect power before maintaining.
3 Months
Replace
unreadable
labels.
Clean and
tighten weld
terminals.
Repair or
replace
cracked
weld
cable.
6 Months
Blow out or vacuum inside.
During heavy service, clean
monthly
Or
5-2. Troubleshooting Table
Trouble Remedy
No weld output; unit completely
inoperative.
Place line disconnect switch in On position (see Section 3-12).
Check and replace line fuse(s), if necessary, or reset circuit breaker (see Section 3-12).
Check for proper input power connections (see Section 3-12).
Check for proper jumper link position (see Section 3-12).
No weld output; Power switch pilot light
on.
Check, repair, or replace feeder (see wire feeder Owner’s Manual).
Unit overheated. Allow unit to cool with fan On (see Section 3-2).
Have Factory Authorized Service Agent check control board PC1 and/or motor drive board PC2.
Unit provides only maximum or
minimum weld output.
Have Factory Authorized Service Agent check control board PC1, motor drive board PC2 and Hall
Device HD1.
Erratic or improper weld output.
Use proper size and type of weld cable (see Section 3-8).
Clean and tighten all weld connections.
Check wire feeder installation according to Owner’s Manual.
Use proper tap on stabilizer (see Section 3-9)
Have Factory Authorized Service Agent check control board PC1, motor drive board PC2 and/or SCR
in main rectifier.
No 115 volts ac output at duplex recep-
tacle.
Reset circuit breaker CB1 (see Section 3-7).
Fan not operating. Note: fan runs only
when cooling is necessary.
Check for and remove anything blocking fan movement.
Have Factory Authorized Service Agent check fan motor.
OM-2227 Page 16
Trouble Remedy
Wire does not feed, feeder completely
inoperative.
Check 9pin plug PLG8 connections (see Section 3-10).
Check input power.
Wire does not feed. Check circuit breaker CB2 on welding power source, and reset if necessary (see Section 3-7).
Check gun trigger connection at wire feeder (see wire feeder owner’s manual). Check gun trigger leads
and trigger switch.
Have Factory Authorized Service Agent check drive motor, control board PC1, and motor board PC2.
Wire feeds erratically. Readjust hub tension and drive roll pressure (see wire feeder owner’s manual).
Use correct size drive roll (see wire feeder owners manual).
Clean or replace dirty or worn drive roll (see wire feeder owner’s manual).
Remove weld spatter around nozzle opening.
Replace contact tip or liner.
Have Factory Authorized Service Agent check drive motor and control board PC1.
Wire feeds when Jog switch is pressed
but not when gun trigger is pressed.
Check gun trigger connection at wire feeder (see wire feeder owner’s manual). Check gun trigger leads
and trigger switch.
Wire feeds as soon as power is applied. Check gun trigger.
Wire does not feed until trigger is
pressed, but continues to feed after
trigger is released.
Check position of Mode switch on welding power source. This is normal operation when switch is in Crater
Fill On or Trigger Hold On positions (see Section 4-1).
Check for short between gun trigger leads and weld cable. Repair or replace gun trigger leads.
Gas valve rattles loudly and wire feeds
slowly or erratically.
Check for short between gun trigger leads and weld cable. Repair or replace gun trigger leads.
Gas does not flow; wire feeds. Check gas valve and flowmeter.
  • Page 1 1
  • Page 2 2
  • Page 3 3
  • Page 4 4
  • Page 5 5
  • Page 6 6
  • Page 7 7
  • Page 8 8
  • Page 9 9
  • Page 10 10
  • Page 11 11
  • Page 12 12
  • Page 13 13
  • Page 14 14
  • Page 15 15
  • Page 16 16
  • Page 17 17
  • Page 18 18
  • Page 19 19
  • Page 20 20
  • Page 21 21
  • Page 22 22
  • Page 23 23
  • Page 24 24
  • Page 25 25
  • Page 26 26
  • Page 27 27
  • Page 28 28

Miller LA145079 Owner's manual

Category
Welding System
Type
Owner's manual
This manual is also suitable for

Ask a question and I''ll find the answer in the document

Finding information in a document is now easier with AI